Activating and inhibitory receptors control natural killer (NK) cell activity. T-cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT) was recently identified as a new inhibitory receptor on T and NK cells that suppressed their effector functions. TIGIT harbors the immunoreceptor tail tyrosine (ITT)-like and ITIM motifs in its cytoplasmic tail. However, how its ITT-like motif functions in TIGIT-mediated negative signaling is still unclear. Here, we show that TIGIT/PVR (poliovirus receptor) engagement disrupts granule polarization leading to loss of killing activity of NK cells. The ITT-like motif of TIGIT has a major role in its negative signaling. After TIGIT/PVR ligation, the ITT-like motif is phosphorylated at Tyr225 and binds to cytosolic adapter Grb2, which can recruit SHIP1 to prematurely terminate phosphatidylinositol 3-kinase (PI3K) and MAPK signaling, leading to downregulation of NK cell function. In support of this, Tyr225 or Asn227 mutation leads to restoration of TIGIT/PVR-mediated cytotoxicity, and SHIP1 silencing can dramatically abolish TIGIT/PVR-mediated killing inhibition. Meanwhile, normal cells are kept away from their cytotoxicity. Therefore, the discrimination between 'self' normal cells and 'nonself' abnormal cells has to be precisely recognized by NK cells. [5][6][7] A very large repertoire of receptors, both activating and inhibitory, is proved to be critical in NK cell function. The best-known inhibitory receptors of NK cells are the killer-cell immunoglobulin-like receptor family, whose physical ligands are MHC-I molecules that are expressed on self normal cells to protect them from NK cell lysis. 8 Other non-MHC-I inhibitory receptors, which do not associate with MHC-I molecules, are also expressed on NK cells. 9 However, their physiological and pathological significances have not been defined yet.T-cell immunoglobulin and ITIM domain (TIGIT) was recently identified as an inhibitory receptor that is expressed mainly on NK cells, activated CD4 and CD8 T cells. 10-12 TIGIT harbors one extracellular immunoglobulin domain, a type 1 transmembrane region, and an immunoglobulin tail tyrosine (ITT)-like phosphorylation motif followed by an ITIM (immunoreceptor tyrosine-based inhibition motif) of the cytoplasmic tail. 13 The physical ligands of TIGIT were identified as the poliovirus receptor (PVR, or CD155) and the PVRL2 (Nectin2, or CD112). 10,12 TIGIT can bind to PVR of human dendritic cells to enhance interleukin 10 (IL-10) production, which inhibits T-cell activation. 10 Kuchroo et al. 14 showed that TIGIT harbors a T-cell-intrinsic inhibitory function to suppress T-cell activation.Moreover, TIGIT can inhibit NK cell cytolysis through engagement with PVR or PVRL2. 11 TIGIT-deficient mice are more susceptible to autoimmune diseases. 14,15 However, the inhibitory mechanism mediated by TIGIT has not been elucidated.TIGIT contains a classical ITIM motif, which recruits either Src homology (SH) 2 domain-containing protein tyrosine phosphatases SHP1 and SHP...
20-Hydroxyecdysone (20E) is a key hormone which regulates growth, development and reproduction in insects. Although cytochrome P450 enzymes (P450s) participating in the ecdysteroid biosynthesis of 20E have been characterized in a few model insects, no work has been published on the molecular entity of their orthologs in the cotton bollworm Helicoverpa armigera, a major pest insect in agriculture worldwide. In this study, four cytochrome P450 homologs, namely HarmCYP302A1, HarmCYP306A1, HarmCYP314A1 and HarmCYP315A1 from H. armigera, were identified and evolutional conservation of these Halloween genes were revealed among lepidopteran. Expression analyses showed that HarmCYP302A1 and HarmCYP315A1 were predominantly expressed in larval prothoracic glands, whereas this predominance was not always observed for HarmCYP306A1 and CYP314A1. The expression patterns of Halloween genes indicate that the fat bodies may play an important role in the conversion of ecdysone into 20E in larval-larval molt and in larval-pupal metamorphosis, and raise the possibility that HarmCYP315A1 plays a role in tissue-specific regulation in the steroid biosynthesis in H. armigera. These findings represent the first identification and expression characterization of four steriodogenic P450 genes and provide the groundwork for future functional and evolutionary study of steroid biosynthesis in this agriculturally important pest.
Quercetin is ubiquitous in terrestrial plants. The cotton bollworm Helicoverpa armigera as a highly polyphagous insect has caused severe crop losses. Until now, interactions between this pest and quercetin are poorly understood at the biochemical and molecular levels. In this study, we investigated the in vivo effects of quercetin on performance of cotton bollworm and on cytochrome P450 (P450) expression. Deleterious effects of quercetin on the performance of the cotton bollworm, including growth, survival, pupation and adult emergence were observed after oral administration of 3 and 10 mg g(-1) quercetin to larvae since the third instar, whereas no significant toxic effect was found at 0.1 mg g(-1) quercetin treatment. Piperonyl butoxide treatment enhanced the toxicity of quercetin. In vitro metabolism studies showed that quercetin was rapidly transformed by gut enzymes of fifth instar larvae of the cotton bollworm. qRT-PCR results revealed that the effect of quercetin on P450 expression was tissue- and dose-specific. Quercetin regulated P450 expression in a mild manner, and it could serve as P450 inducer (CYP337B1, CYP6B6) or repressor (CYP337B1, CYP6B7, CYP6B27, CYP9A14, CYP6AE11, and CYP4M7). These findings are important for advancing our understanding of the biochemical and molecular response of insects to plant toxins and have implications for a smart pest control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.