Activating and inhibitory receptors control natural killer (NK) cell activity. T-cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT) was recently identified as a new inhibitory receptor on T and NK cells that suppressed their effector functions. TIGIT harbors the immunoreceptor tail tyrosine (ITT)-like and ITIM motifs in its cytoplasmic tail. However, how its ITT-like motif functions in TIGIT-mediated negative signaling is still unclear. Here, we show that TIGIT/PVR (poliovirus receptor) engagement disrupts granule polarization leading to loss of killing activity of NK cells. The ITT-like motif of TIGIT has a major role in its negative signaling. After TIGIT/PVR ligation, the ITT-like motif is phosphorylated at Tyr225 and binds to cytosolic adapter Grb2, which can recruit SHIP1 to prematurely terminate phosphatidylinositol 3-kinase (PI3K) and MAPK signaling, leading to downregulation of NK cell function. In support of this, Tyr225 or Asn227 mutation leads to restoration of TIGIT/PVR-mediated cytotoxicity, and SHIP1 silencing can dramatically abolish TIGIT/PVR-mediated killing inhibition. Meanwhile, normal cells are kept away from their cytotoxicity. Therefore, the discrimination between 'self' normal cells and 'nonself' abnormal cells has to be precisely recognized by NK cells. [5][6][7] A very large repertoire of receptors, both activating and inhibitory, is proved to be critical in NK cell function. The best-known inhibitory receptors of NK cells are the killer-cell immunoglobulin-like receptor family, whose physical ligands are MHC-I molecules that are expressed on self normal cells to protect them from NK cell lysis. 8 Other non-MHC-I inhibitory receptors, which do not associate with MHC-I molecules, are also expressed on NK cells. 9 However, their physiological and pathological significances have not been defined yet.T-cell immunoglobulin and ITIM domain (TIGIT) was recently identified as an inhibitory receptor that is expressed mainly on NK cells, activated CD4 and CD8 T cells. 10-12 TIGIT harbors one extracellular immunoglobulin domain, a type 1 transmembrane region, and an immunoglobulin tail tyrosine (ITT)-like phosphorylation motif followed by an ITIM (immunoreceptor tyrosine-based inhibition motif) of the cytoplasmic tail. 13 The physical ligands of TIGIT were identified as the poliovirus receptor (PVR, or CD155) and the PVRL2 (Nectin2, or CD112). 10,12 TIGIT can bind to PVR of human dendritic cells to enhance interleukin 10 (IL-10) production, which inhibits T-cell activation. 10 Kuchroo et al. 14 showed that TIGIT harbors a T-cell-intrinsic inhibitory function to suppress T-cell activation.Moreover, TIGIT can inhibit NK cell cytolysis through engagement with PVR or PVRL2. 11 TIGIT-deficient mice are more susceptible to autoimmune diseases. 14,15 However, the inhibitory mechanism mediated by TIGIT has not been elucidated.TIGIT contains a classical ITIM motif, which recruits either Src homology (SH) 2 domain-containing protein tyrosine phosphatases SHP1 and SHP...
Although previous studies suggest that myeloid zinc-finger 1 (MZF-1) is a multifaceted transcription factor that may function as either an oncogene or a tumor suppressor, the molecular bases determining its different traits remain elusive. Increasing evidence suggests that disorders in iron metabolism affect tumorigenesis and tumor behaviors, and that excess tumor iron stimulates tumor progression through various mechanisms such as enhancing DNA replication and energy metabolism. Ferroportin (FPN) is the only known iron exporter in mammalian cells, and it determines global iron egress out of cells. FPN reduction leads to decreased iron efflux and increased intracellular iron that consequentially aggravates the oncogenic effects of iron. MZF-1 was recently identified as a transcription factor that regulates FPN expression. Thus far, however, the molecular mechanisms underlying the MZF-1-FPN signaling in cancers are largely unknown. Here, we found a significant reduction of FPN levels in prostate tumors relative to adjacent tissues, and demonstrated a crucial role of FPN in tumor growth through controlling tumor iron concentration. Inhibition of MZF-1 expression led to reduced FPN concentration, coupled with resultant intracellular iron retention, increased iron-related cellular activities and enhanced tumor cell growth. In contrast, increase of MZF-1 expression restrained tumor cell growth by promoting FPN-driven iron egress. Importantly, we demonstrated that AP4 and c-Myb jointly modulated MZF-1 transcription, and that miR-492 was also directly involved in regulating MZF-1 concentration through binding to the 3' untranslated regions of its mRNA. These results correlate with reduced AP4 and c-Myb expression and elevated miR-492 expression found in prostate tumors as compared with adjacent tissues that resulted in diminished MZF-1 and FPN. Moreover, we demonstrated that alterations of AP4, c-Myb and miR-492 levels significantly affected tumor cell growth. Targeting molecules within the MZF-1-FPN signaling thus appears to be a promising approach to restrain prostate cancer.
Rho-associated kinase (ROCK) has an essential role in governing cell morphology and motility, and increased ROCK activity contributes to cancer cell invasion and metastasis. Burgeoning data suggest that ROCK is also involved in the growth regulation of tumor cells. However, thus far, the molecular mechanisms responsible for ROCK-governed tumor cell growth have not been clearly elucidated. Here we showed that inhibition of ROCK kinase activity, either by a selective ROCK inhibitor Y27632 or by specific ROCK small interfering RNA (siRNA) molecules, attenuated not only motility but also the proliferation of PC3 prostate cancer cells in vitro and in vivo. Importantly, mechanistic investigation revealed that ROCK endowed cancer cells with tumorigenic capability, mainly by targeting c-Myc. ROCK could increase the transcriptional activity of c-Myc by promoting c-Myc protein stability, and ROCK inhibition reduced c-Myc-mediated expression of mRNA targets (such as HSPC111) and microRNA targets (such as miR-17-92 cluster). We provided evidence demonstrating that ROCK1 directly interacted with and phosphorylated c-Myc, resulting in stabilization of the protein and activation of its transcriptional activity. Suppression of ROCK-c-Myc downstream molecules, such as c-Myc-regulated miR-17, also impaired tumor cell growth in vitro and in vivo. In addition, c-Myc was shown to exert a positive feedback regulation on ROCK by increasing RhoA mRNA expression. Therefore, inhibition of ROCK and its stimulated signaling might prove to be a promising strategy for restraining tumor progression in prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.