This paper presents silicon quantum dot channel (QDC) field effect transistors (FETs) and floating gate nonvolatile memory structures. The QDC-FET operation is explained by carrier transport in narrow mini-energy bands which are manifested in an array of SiO x -cladded silicon quantum dot layers. For nonvolatile memory structures, simulations of electron charge densities in the floating quantum dot layers are presented. Experimental threshold voltage shift in I D -V G characteristics is presented after the 'Write' cycle. The QDC-FETs and nonvolatile memory characteristics are expected to enhance due to improved threshold voltage variations by incorporating the lattice-matched II-VI layer as the gate insulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.