SUMMARYSoluble starch synthase II (SSII) plays an important role in the biosynthesis of starch and in rice it consists of three isoforms encoded by SSII-1, SSII-2 and SSII-3. However, the genetic effects of various SSII alleles on grain quality have not been systematically characterized. In the present study, the japonica alleles on SSII-1, SSII-2 and SSII-3 (SSIIa) loci from a japonica cultivar, Suyunuo, were respectively introgressed by molecular marker-assisted selection into a typical indica cultivar, Guichao2, through successive backcrossing, generating three sets of near-isogenic lines (NILs). Grain quality and starch property analysis showed that NIL-SSII-3j exhibited significant decreases in the following parameters: amylose content, average granule size, and setback viscosity and consistency; but increases in peak viscosity, hot paste viscosity, gelatinization temperature and relative crystallinity. Moreover, the proportion of short amylopectin chains and branching degree also increased when compared with those of NIL-SSII-3i (Guochao2). Similar effects were observed in NIL-SSII-1j, and certain alterations in the fine structure of starch (granule size) were revealed. However, NIL-SSII-2j did not exert significant effect on grain quality and starch properties. In brief, among the SSII gene family, the functional diversity occurred on SSII-1 and SSII-3, and not on SSII-2. Therefore, it appears that more attention should be directed to SSII-1 and SSII-3 loci for improving the eating and cooking quality of rice.
Rex rabbit, with multiple phenotypes and colourful fur, is an interesting model for assessing the effect of coat colour gene mutations on characteristic pigmentation phenotype. Based on previous study, the <em>melanophilin</em> (<em>MLPH</em>) gene is a positional candidate gene related coat colour dilution. The fur colours are a lighter shade, e.g. grey instead of black. We sequenced 1689 base pairs of the <em>MLPH</em> gene in Chinchilla and black Rex rabbit. A total of 13 polymorphisms were identified, including seven missense mutations. The rabbit <em>MLPH</em> gene has a very high GC content and the protein shows 64.87% identity to the orthologous human protein (lack of homologous amino acids encoded by human MLPH exon 9). Hardy-Weinberg test showed that, except for the g.606C>A single nucleotid polymorphism (SNP), all other SNPs were in Hardy-Weinberg equilibrium. Haplotype analysis revealed that the seven missense mutation SNPs of two strains of Rex rabbits formed 10 haplotypes, but there were only seven major types of haplotypes (haplotype frequency <em>P</em>>0.05). The major haplotypes of the Chinchilla and black Rex rabbits were H1/H2/H3/H4/H5 and H1/H2/H3/H6/H8, respectively. The special haplotypes of Chinchilla Rex rabbit (H4, H5, H7) were consistently associated with the Chinchilla phenotype. This study provides evidence that different coat colour formation may be caused by one or more mutations within <em>MLPH</em> gene in several Rex rabbit strains. The data on polymorphisms that are associated with the Chinchilla phenotype facilitate the breeding of rabbits with defined coat colours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.