[1] A single-particle soot photometer (SP2) was flown on a NASA WB-57F high-altitude research aircraft in November 2004 from Houston, Texas. The SP2 uses laser-induced incandescence to detect individual black carbon (BC) particles in an air sample in the mass range of $3-300 fg ($0.15-0.7 mm volume equivalent diameter). Scattered light is used to size the remaining non-BC aerosols in the range of $0.17-0.7 mm diameter. We present profiles of both aerosol types from the boundary layer to the lower stratosphere from two midlatitude flights. Results for total aerosol amounts in the size range detected by the SP2 are in good agreement with typical particle spectrometer measurements in the same region. All ambient incandescing particles were identified as BC because their incandescence properties matched those of laboratory-generated BC aerosol. Approximately 40% of these BC particles showed evidence of internal mixing (e.g., coating). Throughout profiles between 5 and 18.7 km, BC particles were less than a few percent of total aerosol number, and black carbon aerosol (BCA) mass mixing ratio showed a constant gradient with altitude above 5 km. SP2 data was compared to results from the ECHAM4/MADE and LmDzT-INCA global aerosol models. The comparison will help resolve the important systematic differences in model aerosol processes that determine BCA loadings. Further intercomparisons of models and measurements as presented here will improve the accuracy of the radiative forcing contribution from BCA.Citation: Schwarz, J. P., et al. (2006), Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere,
Abstract. Accurate mean ages for stratospheric air have been derived from a spatially and temporally comprehensive set of in situ observations of CO2, CH4, and N20 obtained from 1992 to 1998 from the NASA ER-2 aircraft and balloon flights. Errors associated with the tropospheric CO2 seasonal cycle and interannual variations in the CO2 growth rate are ( 0.5 year throughout the stratosphere and ( 0.3 year for air older than 2 years (N20 < 275 ppbv), indicating that the age spectra are broad enough to attenuate these influences over the time period covered by these observations. The distribution of mean age with latitude and altitude provides detailed, quantitative information about the general circulation of the stratosphere. At 20 km, sharp meridional gradients in the mean age are observed across the subtropics. Between 20 and 30 km, the average difference in mean age between the tropics and midlatitudes is -2 years, with slightly smaller differences at higher and lower altitudes. The mean age in the midlatitude middle stratosphere (-25-32 km) is relatively constant with respect to altitude at 5 _ 0.5 years. Comparison with earlier balloon observations of CO2 dating back to the 1970s indicates that the mean age of air in this region has remained within _+1 year of its current value over the last 25 years. A climatology of mean age is derived from the observed compact relationship between mean age and N20. These characteristics of the distribution of mean age in the stratosphere will serve as critically needed diagnostics for models of stratospheric transport.
Abstract. We use ozonesondes launched from Samoa (14øS) during the Pacific Exploratory Mission (PEM) Tropics A to show that O3 mixing ratios usually start increasing toward stratospheric values near 14 km. This is well below the tropical tropopause (as defined either in terms of lapse rate or cold point), which usually occurs between 16 and 17 km. We argue that the main reason for this discrepancy in height between the chemopause and tropopause is that there is very little convective detrainment of ozone-depleted marine boundary layer air above 14 km. We conjecture that the top of the Hadley circulation occurs at roughly 14 km, that convective penetration above this altitude is rare, and that air that is injected above this height subsequently participates in a slow vertical ascent into the stratosphere. The observed dependence of ozone on potential temperature in the transitional zone between the 14-km chemopause and the tropical tropopause is consistent with what would be expected from this hypothesis given calculated clear-sky heating rates and typical in situ ozone production rates in this region. An observed anticorrelation between ozone and equivalent potential temperature below 14 km is consistent with what would be expected from an overturning Hadley circulation, with some transport of high O3/low 0• air from midlatitudes. We also argue that the positive correlations between 03 and N20 in the transitional zone obtained during the 1994 Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft) (ASHOE/MAESA) campaign support the notion that air in this region does have trace elements of stratospheric air (as conjectured previously), so that some of the ozone in the transitional zone does originate from the stratosphere rather than being entirely produced in situ.
Abstract. Simultaneous in situ measurements of the long-lived trace species N20, CH4, CFC-12, CFC-113, CFC-11, CC14, CH3CC13, H-1211, and SF6 were made in the lower stratosphere and upper troposphere on board the NASA ER-2 high-altitude aircraft during the 1994 campaign Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft. The observed extratropical tracer abundances exhibit compact mutual correlations that show little interhemispheric difference or seasonal variability except at higher altitudes in southern hemisphere spring. The environmental impact of the measured source gases depends, among other factors, on the rate at which they release ozone-depleting chemicals in the stratosphere, that is, on their stratospheric lifetimes. We calculate the mean age of the air from the SF 6 measurements and show how stratospheric lifetimes of the other species may be derived semiempirically from their observed gradients with respect to mean age at the extratropical tropopause. We also derive independent stratospheric lifetimes using the CFC-11 lifetime and the slopes of the tracer' s correlations with CFC-11. In both cases, we correct for the influence of tropospheric growth on stratospheric tracer gradients using the observed mean age of the air, time series of observed tropospheric abundances, and model-derived estimates of the width of the stratospheric age spectrum. Lifetime results from the two methods are consistent with each other. Our best estimates for stratospheric lifetimes are 122 + 24 years for N2 ¸, 93 + 18 years for CH4, 87 + 17 years for CFC-12, 100 + 32 years for CFC-113, 32 + 6 years for CC14, 34 + 7 years for CH3CC13, and 24 + 6 years for H-1211. Most of these estimates are significantly smaller than currently recommended lifetimes, which are based largely on photochemical model calculations. Because the derived stratospheric lifetimes are identical to atmospheric lifetimes for most of the species considered, the shorter lifetimes would imply a faster recovery of the ozone layer following the phaseout of industrial halocarbons than currently predicted.
[1] Global satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215-100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS ''version 2.2'' processing algorithms are discussed and quantified. O 3 accuracy is estimated at $40 ppbv +5% ($20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at $30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O 3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of $2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.