During the development of an embryo into a juvenile, the physiology and behavior of a fish change greatly, affecting exposure to and uptake of environmental pollutants. Based on experimental data with sole (Solea solea), an existing bioaccumulation model was adapted and validated to calculate the development of concentrations of persistent organic pollutants in the tissue of developing fish. Simulation revealed that toxic tissue concentrations of pollutants with log octanol-water partition ratio (K(OW)) > 5 peak at the moment when the larvae become free-feeding, when the lipid reserves are depleted. This may explain the delayed effects observed in fish early-life-stage experiments with exposed eggs. In the field, eggs can be exposed through maternal transfer to adult pollutant tissue concentrations, which will increase in the larva to peak tissue concentrations, exceeding those of the adult fish. The results demonstrate the risk of underestimating the effects of lipophilic persistent organic pollutants with log K(OW) > 5 in short-term, early-life-stage fish tests and underscore the importance of maternal transfer as an exposure route in the field situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.