We use a dedicated 0.7-m telescope to image the halos of 119 galaxies in the Local Volume to µ r ∼ 28 − 30 mag/arcsec 2 . The sample is primarily from the 2MASS Large Galaxy Atlas and extended to include nearby dwarf galaxies and more distant giant ellipticals, and spans fully the galaxy colour-magnitude diagram including the blue cloud and red sequence. We present an initial overview, including deep images of our galaxies. Our observations reproduce previously reported low surface brightness structures, including extended plumes in M 51, and a newly discovered tidally extended dwarf galaxy in NGC 7331. Low surface brightness structures, or "envelopes", exceeding 50 kpc in diameter are found mostly in galaxies with M V < −20.5, and classic interaction signatures are infrequent. Defining a halo diameter at the surface brightness 28 mag/arcsec 2 , we find that halo diameter is correlated with total galaxy luminosity. Extended signatures of interaction are found throughout the galaxy colour-magnitude diagram without preference for the red or blue sequences, or the green valley. Large envelopes may be found throughout the colour-magnitude diagram with some preference for the bright end of the red sequence. Spiral and S0 galaxies have broadly similar sizes, but ellipticals extend to notably greater diameters, reaching 150 kpc. We propose that the extended envelopes of disk galaxies are dominated by an extension of the disk population rather than by a classical population II halo.
We present analysis of Chandra X-ray observations of seven quasars that were identified as candidate subparsec binary supermassive black hole (SMBH) systems in the Catalina Real-Time Transient Survey based on the apparent periodicity in their optical light curves. Simulations predict that close-separation accreting SMBH binaries will have different X-ray spectra than single accreting SMBHs, including harder or softer X-ray spectra, ripple-like profiles in the Fe K-α line, and distinct peaks in the spectrum due to the separation of the accretion disk into a circumbinary disk and mini disks around each SMBH. We obtained Chandra observations to test these models and assess whether these quasars could contain binary SMBHs. We instead find that the quasar spectra are all well fit by simple absorbed power-law models, with the rest-frame 2-10keV photon indices, Γ, and the X-ray-to-optical power slopes, α OX , indistinguishable from those of the larger quasar population. This may indicate that these seven quasars are not truly subparsec binary SMBH systems, or it may simply reflect that our sample size was too small to robustly detect any differences. Alternatively, the X-ray spectral changes might only be evident at energies higher than probed by Chandra. Given the available models and current data, no firm conclusions are drawn. These observations will help motivate and direct further work on theoretical models of binary SMBH systems, such as modeling systems with thinner accretion disks and larger binary separations. Unified Astronomy Thesaurus concepts: Quasars (1319); Supermassive black holes (1663); Active galactic nuclei (16); Active galaxies (17); X-ray active galactic nuclei (2035)
Type 2 active galactic nuclei (AGNs) show signatures of accretion onto a supermassive black hole through strong, high-ionization, narrow emission lines extended on scales of hundreds to thousands of parsecs, but they lack the broad emission lines from close in to the black hole that characterize type 1 AGNs. The lack of broad emission could indicate obscuration of the innermost nuclear regions, or could indicate that the black hole is no longer strongly accreting. Since high-energy X-rays can penetrate thick obscuring columns, they have the power to distinguish these two scenarios. We present high-energy NuSTAR observations of nine Seyfert 2 AGNs from the Infrared Astronomical Satellite 12 μm survey, supplemented with low-energy X-ray observations from Chandra, XMM-Newton, and Swift. The galaxies were selected to have anomalously low observed 2–10 keV luminosities compared to their [O iii] optical luminosities, a traditional diagnostic of heavily obscured AGNs, reaching into the Compton-thick regime for the highest hydrogen column densities (N H > 1.5 × 1024 cm−2). Based on updated [O iii] luminosities and intrinsic X-ray luminosities based on physical modeling of the hard X-ray spectra, we find that one galaxy was misclassified as type 2 (NGC 5005) and most of the remaining AGNs are obscured, including three confirmed as Compton thick (IC 3639, NGC 1386, and NGC 3982). One galaxy, NGC 3627, appears to have recently deactivated. Compared to the original sample that the nine AGNs were selected from, this is a rate of approximately 1%. We also find a new X-ray changing-look AGN in NGC 6890.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.