cited By 19Monitoring land cover and habitat change is a key issue for conservation managers because of its potential negative impact on biodiversity. The Land Cover Classification System (LCCS) and the General Habitat Categories (GHC) System have been proposed by the remote sensing and ecological research community, respectively, for the classification of land covers and habitats across various scales. Linking the two systems can be a major step forward towards biodiversity monitoring using remote sensing. The translation between the two systems has proved to be challenging, largely because of differences in definitions and related difficulties in creating one-to-one relationships between the two systems. This paper proposes a system of rules for linking the two systems and additionally identifies requirements for site-specific contextual and environmental information to enable the translation. As an illustration, the LCCS classification of the Le Cesine protected area in Italy is used to show rules for translating the LCCS classes to GHCs. This study demonstrates the benefits of a translation system for biodiversity monitoring using remote sensing data but also shows that a successful translation is often depending on the degree of ecological knowledge of the habitats and its relationship with land cover and contextual information.Peer reviewe
International audienceTo evaluate progress on political biodiversity objectives, biodiversity monitoring provides information on whether intended results are being achieved. Despite scientific proof that monitoring and evaluation increase the (cost) efficiency of policy measures, cost estimates for monitoring schemes are seldom available, hampering their inclusion in policy programme budgets. Empirical data collected from 12 case studies across Europe were used in a power analysis to estimate the number of farms that would need to be sampled per major farm type to detect changes in species richness over time for four taxa (vascular plants, earthworms, spiders and bees). A sampling design was developed to allocate spatially, across Europe, the farms that should be sampled. Cost estimates are provided for nine monitoring scenarios with differing robustness for detecting temporal changes in species numbers. These cost estimates are compared with the Common Agricultural Policy (CAP) budget (2014-2020) to determine the budgetallocation required for the proposed farmland biodiversity monitoring. Results show that the bee indicator requires the highest number of farms to be sampled and the vascular plant indicator the lowest. The costs for the nine farmland biodiversity monitoring scenarios corresponded to 001%-074% of the total CAP budget and to 004%-248% of the CAP budget specifically allocated to environmental targets.Synthesis and applications. The results of the cost scenarios demonstrate that, based on the taxa and methods used in this study, a Europe-wide farmland biodiversity monitoring scheme would require a modest share of the Common Agricultural Policy budget. The monitoring scenarios are flexible and can be adapted or complemented with alternate data collection options (e.g. at national scale or voluntary efforts), data mobilization, data integration or modelling efforts. Editor's Choic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.