We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of α = − 1.40 ± 0.11 ( stat. ) − 0.09 + 0.06 ( sys. ) , consistent with the −3/2 expectation for a nonevolving population in Euclidean space. We find that α is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of [ 820 ± 60 ( stat. ) − 200 + 220 ( sys. ) ] / sky / day above a fluence of 5 Jy ms at 600 MHz, with a scattering time at 600 MHz under 10 ms and DM above 100 pc cm−3.
We report the detection of a single burst from the first-discovered repeating Fast Radio Burst source, FRB 121102, with CHIME/FRB, which operates in the frequency band 400-800 MHz. The detected burst occurred on 2018 November 19 and its emission extends down to at least 600 MHz, the lowest frequency detection of this source yet. The burst, detected with a significance of 23.7σ, has fluence 12±3 Jy ms and shows complex time and frequency morphology. The 34 ms width of the burst is the largest seen for this arXiv:1906.11305v1 [astro-ph.HE]
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a novel transit radio telescope operating across the 400–800 MHz band. CHIME is composed of four 20 m × 100 m semicylindrical paraboloid reflectors, each of which has 256 dual-polarization feeds suspended along its axis, giving it a ≳200 deg2 field of view. This, combined with wide bandwidth, high sensitivity, and a powerful correlator, makes CHIME an excellent instrument for the detection of fast radio bursts (FRBs). The CHIME Fast Radio Burst Project (CHIME/FRB) will search beam-formed, high time and frequency resolution data in real time for FRBs in the CHIME field of view. Here we describe the CHIME/FRB back end, including the real-time FRB search and detection software pipeline, as well as the planned offline analyses. We estimate a CHIME/FRB detection rate of 2–42 FRBs sky–1 day–1 normalizing to the rate estimated at 1.4 GHz by Vander Wiel et al. Likely science outcomes of CHIME/FRB are also discussed. CHIME/FRB is currently operational in a commissioning phase, with science operations expected to commence in the latter half of 2018.
The Very Large Array Sky Survey (VLASS) is observing the entire sky north of −40° in the S band (2 GHz < ν < 4 GHz), with the highest angular resolution (2.″5) of any all-sky radio continuum survey to date. VLASS will cover its entire footprint over three distinct epochs, the first of which has now been observed in full. Based on Quick Look images from this first epoch, we have created a catalog of 1.9 × 106 reliably detected radio components. Due to the limitations of the Quick Look images, component flux densities are underestimated by ∼15% at S peak > 3 mJy beam−1 and are often unreliable for fainter components. We use this catalog to perform statistical analyses of the ν ∼ 3 GHz radio sky. Comparisons with the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey show the typical 1.4–3 GHz spectral index, α, to be ∼−0.71. The radio color–color distribution of point and extended components is explored by matching with FIRST and the LOFAR Two-meter Sky Survey. We present the VLASS source counts, dN/dS, which are found to be consistent with previous observations at 1.4 and 3 GHz. Resolution improvements over FIRST result in excess power in the VLASS two-point correlation function at angular scales ≲7″, and in 18% of active galactic nuclei associated with a single FIRST component being split into multicomponent sources by VLASS.
We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946+2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946+2052 is a 17-ms pulsar in a 1.88-hour, eccentric (e = 0.06) orbit with a 1.2 M companion. We have used the Jansky Very Large Array to localize PSR J1946+2052 to a precision of 0. 09 using a new phase binning mode. We have searched multiwavelength catalogs for coincident sources but did not find any counterparts. The improved position enabled a measurement of the spin period derivative of the pulsar (Ṗ = 9 ± 2 × 10 −19 ); the small inferred magnetic field strength at the surface (B S = 4 × 10 9 G) indicates that this pulsar has been recycled. This and the orbital eccentricity lead to the conclusion that PSR J1946+2052 is in a DNS system. Among all known radio pulsars in DNS systems, PSR J1946+2052 has the shortest orbital period and the shortest estimated merger timescale, 46 Myr; at that time it will display the largest spin effects on gravitational wave waveforms of any such system discovered to date. We have measured the advance of periastron passage for this system, ω = 25.6 ± 0.3 deg yr −1 , implying a total system mass of only 2.50 ± 0.04 M , so it is among the 2 lowest mass DNS systems. This total mass measurement combined with the minimum companion mass constrains the pulsar mass to 1.3 M .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.