Kerker effect is one of the unique phenomena in modern electrodynamics. Due to overlapping of electric and magnetic dipole moments, all-dielectric particles can be invisible in forward or backward directions. In our paper we propose new conditions between resonantly excited electric dipole and magnetic quadrupole in ceramic high index spheroidal particle for demonstrating transverse Kerker effect. Moreover, we perform proof-of-concept microwave experiment and demonstrate dumbbell radiation pattern with suppressed scattering in both forward and backward direction and enhanced scattering in lateral direction. Our concept is promising for future planar lasers, nonreflected metasurface and laterally excited waveguides and nanoantennas.
Kerker effect is one of the unique phenomena in modern electrodynamics. Due to overlapping of electric and magnetic dipole moments, all-dielectric particles can be invisible in forward or backward directions. In our paper we propose new conditions between resonantly excited electric dipole and magnetic quadrupole in ceramic high index spheroidal particles for demonstrating transverse Kerker effect. Moreover, we perform proof-of-concept microwave experiment and demonstrate dumbbell radiation pattern with suppressed scattering in both forward and backward directions and enhanced scattering in lateral directions. Our concept is promising for future planar lasers, nonreflected metasurface and laterally excited waveguides and nanoantennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.