The ongoing COVID‐19 pandemic caused by SARS‐CoV‐2 is associated with high morbidity and mortality. This zoonotic virus has emerged in Wuhan of China in December 2019 from bats and pangolins probably and continuing the human‐to‐human transmission globally since last two years. As there is no efficient approved treatment, a number of vaccines were developed at an unprecedented speed to counter the pandemic. Moreover, vaccine hesitancy is observed that may be another possible reason for this never ending pandemic. In the meantime, several variants and mutations were identified and causing multiple waves globally. Now the safety and efficacy of these vaccines are debatable and recommended to determine whether vaccines are able to interrupt transmission of SARS‐CoV‐2 variant of concern (VOC). Moreover, the VOCs continue to emerge that appear more transmissible and less sensitive to virus‐specific immune responses. In this overview, we have highlighted various drugs and vaccines used to counter this pandemic along with their reported side effects. Moreover, the preliminary data for the novel VOC “Omicron” are discussed with the existing animal models.
The Schiff base complexes derived from Salicylaldehyde and o- pheneylenediamine have been prepared and characterized using several physical techniques, in terms; elemental analysis, molar conductance measurements, thermogravimetric analysis, magnetic moment measurements, infrared, electronic and electron paramagnetic resonance spectra. The elemental analysis data exhibit the formation of 1:1[M: L] complexes. The molar conductance values reveal a non- electrolytic nature. The thermogravimetric analysis data of Cr(VI) complex show the presence of water molecules. The obtained magnetic moment values exhibit the existence of three unpaired electrons in the Cr(III) complex and a diamagnetic phenomenon for the other three complexes. The infrared spectral data display the coordination behavior of the Schiff base towards Cr(VI), Cr(III), Pb(II)) and TiO(IV) ions. The electronic absorption spectra of the Schiff base and its complexes show π→π* (phenyl ring), n→π* (HC=N) and the expected geometrical structure for the prepared complexes. The electron paramagnetic resonance spectral data satisfy the presence of a paramagnetic phenomenon and support the expected geometrical structure of Cr(III) complex. The Schiff base and its new complexes were tested for antibacterial activity against gram positive bacteria; Staphylococcus aureus and gram negative bacteria; Salmonella, Escherichia coli including the resistance bacteria Pseudomonas aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.