Several naturally occurring food components or non-steroidal anti-inflammatory drugs (NSAIDs) may reduce gastrointestinal cancer rates. Recently we have shown that dietary administration of such compounds enhanced the glutathione S-transferase (GST) enzyme activity and class alpha, mu and pi isoenzyme levels in the rat gastrointestinal tract. Elevation of the levels of GSTs, a family of biotransformation enzymes with many functions such as detoxification of carcinogens, might be one of the mechanisms that lead to cancer prevention. We therefore investigated whether the anticarcinogens alpha-angelicalactone, alpha-tocopherol, beta-carotene, coumarin, ellagic acid, flavone, indole-3-carbinol, d-limonene, oltipraz, phenethylisothiocyanate (PEITC) and the sulphoraphane analogue compound-30 affect gastrointestinal rGSTT1-1 protein levels in male Wistar rats. rGSTT1-1 protein levels were determined in cytosolic fractions of liver and oesophageal-, gastric-, small intestinal- and colonic mucosa by densitometrical analyses of western blots after immunodetection with an anti human GSTT1-1 monoclonal antibody, that cross-reacts with rGSTT1-1. In control Wistar rats, gastrointestinal rGSTT1-1 protein levels were highest in the liver and decreased in the order liver > stomach > colon > oesophagus > small intestine. Gastric rGSTT1-1 protein levels were enhanced by alpha-angelicalactone, alpha-tocopherol, coumarin, ellagic acid, oltipraz, PEITC and the sulphoraphane analogue compound-30. Oesophageal rGSTT1-1 protein levels were elevated by a-angelicalactone and coumarin, whereas colonic rGSTT1-1 protein levels were elevated by coumarin. Ellagic acid, on the other hand, reduced hepatic rGSTT1-1 protein levels to 53% of the control. In conclusion, dietary anticarcinogens are capable of inducing rGSTT1-1 protein levels in the rat gastrointestinal tract, and are most pronounced in the stomach. Enhanced rGSTT1-1 protein levels might lead to an increase of enzyme activity and to a more efficient detoxification of carcinogens and thus could contribute to prevention of carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.