Dopaminergic neurotransmission in the dorsal and ventral striatum is thought to be involved in distinct aspects of cocaine addiction. Ventral striatal dopamine mediates the acute reinforcing properties of cocaine, whereas dopamine in the dorsolateral striatum (DLS) is thought to become involved in later stages of the addiction process to mediate well-established cue-controlled drug seeking. However, it is unclear whether the DLS also has a role in the reinforcing properties of cocaine itself. Therefore, we systematically investigated the involvement of dopamine in dorsal and ventral striatal regions in cocaine self-administration, using various schedules of reinforcement in animals with limited drug taking experience. Intra-DLS infusion of the dopamine receptor antagonist α-flupenthixol did not affect the acquisition of cocaine self-administration, increased cocaine self-administration under a fixed ratio-1 (FR-1) schedule of reinforcement, caused a rightward and downward shift of the dose-response curve of cocaine under an FR-1 schedule of reinforcement and decreased responding for cocaine under a progressive ratio (PR) schedule of reinforcement. Infusion of α-flupenthixol into the ventral nucleus accumbens (NAcc) shell inhibited the acquisition of cocaine self-administration, reduced responding for the drug under FR-1 and PR schedules of reinforcement, and caused a downward shift of the dose-response curve of cocaine self-administration under an FR-1 schedule of reinforcement. These data show that dopamine in both the DLS and NAcc shell is involved in cocaine reinforcement. We suggest that the DLS and the NAcc shell mediate somewhat distinct facets of the reinforcing properties of cocaine, related to its rewarding and motivational aspects, respectively.
RationaleDrugs of abuse are initially used because of their rewarding properties. As a result of repeated drug exposure, sensitization to certain behavioral effects of drugs occurs, which may facilitate the development of addiction. Recent studies have implicated the metabotropic glutamate receptor 5 (mGlu5 receptor) in drug reward, but its role in sensitization is unclear. Stimulation of dopamine receptors plays an important role in drug reward, but not in the sensitizing properties of cocaine and morphine.ObjectiveThis study aims to evaluate the role of mGlu5 and dopamine receptors in the development of cocaine- and morphine-induced conditioned place preference (CPP) and psychomotor sensitization.Materials and methodsRats were treated with the mGlu5 receptor antagonist MTEP (0, 1, 3, and 10 mg/kg, i.p.) or the dopamine receptor antagonist α-flupenthixol (0, 0.125, 0.25, and 0.5 mg/kg, i.p.) during place conditioning with either morphine (3 mg/kg, s.c.) or cocaine (15 mg/kg, i.p.). Furthermore, MTEP (1 mg/kg, i.p.) or α-flupenthixol (0.5 mg/kg, i.p.) was co-administered during cocaine (30 mg/kg, i.p.) or morphine (3.0 mg/kg, s.c.) pretreatment and psychomotor sensitization was tested 3 weeks post-treatment.ResultsMTEP attenuated the development of morphine- but not cocaine-induced CPP. In contrast, MTEP suppressed the development of cocaine- but not morphine-induced psychomotor sensitization. α-Flupenthixol blocked the development of both cocaine- and morphine-induced CPP but did not affect the development of sensitization to either drug.ConclusionDopamine receptor stimulation mediates cocaine and morphine reward but not sensitization. In contrast, the role of mGlu5 receptors in reward and sensitization is drug-specific.
RationaleIn heterogeneous seeking–taking (ST) chain schedules of self-administration, seeking rewards and taking rewards are distinct actions, giving animals explicit control over their intake of the reward. However, the neurobehavioral characteristics of ST chain schedules are relatively unexplored.ObjectivesThis study was made to evaluate two variants of ST chain schedules of self-administration to measure seeking and taking of sucrose and cocaine in rats.MethodsRats had to respond on one lever (seeking lever) under a random interval (RI) or under a progressive ratio (PR) schedule, to gain access to a second lever (taking lever), responding on which under a fixed-ratio 1 (FR-1) schedule of reinforcement delivered the reward. We assessed the effects of reward size, reward omission, and administration of the dopamine receptor antagonist α-flupenthixol. The effects of α-flupenthixol on responding for cocaine or sucrose under an FR-1 schedule of reinforcement were also assessed.ResultsCocaine seeking under both schedules was reduced by decreasing reward size, reward omission, and α-flupenthixol treatment. Cocaine taking was decreased by α-flupenthixol treatment and reward omission, but not by altering reward size. Sucrose seeking was not affected by reward size, but was reduced by α-flupenthixol and reward omission. Sucrose taking was diminished by reward omission only. α-Flupenthixol increased cocaine but not sucrose intake under an FR-1 schedule of reinforcement.ConclusionsBoth ST(PR) and ST(RI) schedules can be used to assess seeking and taking of sucrose and cocaine. Dopaminergic neurotransmission mediates the positive subjective properties of cocaine but not sucrose and the motivational properties of both sucrose and cocaine.
The reinforcing and addictive properties of cocaine are thought to rely on the dopaminergic innervation of the striatum. The ventromedial [i.e. nucleus accumbens shell (NAcc) shell] and dorsolateral [dorsolateral striatum (DLS)] regions of the striatum are serially connected, and it is thought that slowly developing neuroadaptations are responsible for the recruitment of the DLS in mediating habitual drug use after extended drug experience. Remarkably, we have recently shown that the DLS is also involved in cocaine self-administration after limited use, to modulate the reinforcing properties of the drug, a function usually ascribed to the NAcc shell. Here, we investigated whether the involvement of the DLS in cocaine reinforcement requires dopaminergic activity within the NAcc shell, by performing a pharmacological disconnection study. We infused the dopamine receptor antagonist α-flupenthixol unilaterally into the NAcc shell and infused this same antagonist into the contralateral DLS, thereby disrupting dopaminergic interconnectivity within the striatum. We show that this disconnection results in increased responding for cocaine under a fixed ratio-1 schedule of reinforcement in rats with limited cocaine experience. These data suggest that a functional dopaminergic interaction between the NAcc shell and the DLS mediates cocaine reinforcement during the early stages of drug use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.