1. We have used peripheral nerve transplants or cultured Schwann cells grafted in association with different types of polymer to study axonal regrowth in the rat visual system. In some instances the glia were co-grafted with fetal tectal tissue. 2. The studies have two main aims: (i) to determine whether retinal axons can be induced to regrow at a site distant from their cell soma, that is, after damage to the brachial region of the optic tract; (ii) to determine whether retinal axons exposed to Schwann cells retain the ability to recognize their appropriate target neurons in CNS tissue. 3. In brachial lesion studies, Schwann cells were placed in the lesion site in association with nitrocellulose papers, within polycarbonate tubes in the presence or absence of a supporting extracellular matrix (ECM), or within polymer hydrogel scaffolds. Autologous sciatic nerve grafts were also used. Immunohistochemical studies revealed the presence of regenerating axons within all polymer bridges. Regrowth of retinal axons was also seen, however, growth was not extensive and was limited to the proximal 1-1.5 mm of the implants. 4. In target innervation experiments, two surgical paradigms were developed. In one experiment, a segment of sciatic nerve was autografted onto the transected optic nerve in adult rats and the distal end of each graft was placed adjacent to fetal tectal (target) tissue implanted into the frontal cortex. To date, we have not been able to demonstrate selective recognition of target regions within tectal transplants by retinal axons exiting the sciatic nerve implants. 5. In the second experiment, Schwann cells were mixed with fetal tectal cells and co-grafted to the midbrain of newborn host rats. Schwann cells altered the characteristic pattern of host retinal growth into tectal grafts; in some cases axons were induced to grow away from appropriate target areas by nearby co-grafted Schwann cells. 6. In summary, Schwann cell/polymer scaffolds may provide a useful way of promoting the regrowth of damaged axons in the CNS, however: (i) in adults, at least, their effectiveness is reduced if they are located at a distance from the cell bodies giving rise to regenerating axons; (ii) in some circumstances exposure to a peripheral glial environment may affect the capacity of regenerating axons to recognize appropriate target cells in the CNS neuropil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.