1. The molecular mechanism of the relaxation of deformation of high-elastic polymers has been studied. 2. It is shown that the slow relaxation, which is typical of high-elastic polymers, may be best explained as a restoration process, which either partial or complete (depending on the degree of development of side chains in the molecular structure formed by the main valence chains) of the balanced configurations of the molecular chains. 3. It is shown that the rate of the relaxation process in this case is determined by the molecular activity of the particular polymer. 4. An approximate equation for the kinetics of high-elastic deformation which expresses qualitatively the mechanical properties of high-elastic polymers is proposed. 5. Hypotheses concerning the relation between the time of relaxation and the unbalanced stress are advanced. Equation (2) is derived as characteristic of this relation. 6. It is shown that the joint application of Equations (1) and (2) makes it possible to describe qualitatively the relaxation of stress at constant deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.