The occurrence of neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in the sympathetic and parasympathetic innervation of the nasal mucosa was studied in various species including man. A dense network of NPY-immunoreactive (IR) fibres was present around arteries and arterioles in the nasal mucosa of all species studied. NPY was also located in nerves around seromucous glands in pig and guinea-pig, but not in rat, cat and man. The NPY-IR glandular innervation corresponded to about 20% of the NPY content of the nasal mucosa as revealed by remaining NPY content determined by radioimmunoassay after sympathectomy. These periglandular NPY-positive fibres had a distribution similar to the VIP-IR and PHI-IR nerves but not to the noradrenergic markers tyrosine hydroxylase (TH) or dopamine-beta-hydroxylase (DBH). The NPY nerves around glands and some perivascular fibres were not influenced by sympathectomy and probably originated in the sphenopalatine ganglion where NPY-IR and VIP-IR ganglion cells were present. The venous sinusoids were innervated by NPY-positive fibres in all species except the cat. Dense NPY and DBH-positive innervation was seen around thick-walled vessels in the pig nasal mucosa; the latter may represent arterio-venous shunts. Double-labelling experiments using TH and DBH, and surgical sympathectomy revealed that the majority of NPY-IR fibres around blood vessels were probably noradrenergic. The NPY-positive perivascular nerves that remained after sympathectomy in the pig nasal mucosa also contained VIP/PHI-IR. The major nasal blood vessels, i.e. sphenopalatine artery and vein, were also densely innervated by NPY-IR fibres of sympathetic origin. Perivascular VIP-IR fibres were present around small arteries, arterioles, venous sinusoids and arterio-venous shunt vessels of the nasal mucosa whereas major nasal vessels received only single VIP-positive nerves. The trigeminal ganglion of the species studied contained only single TH-IR or VIP-IR but no NPY-positive ganglion cells. It is concluded that NPY in the nasal mucosa is mainly present in perivascular nerves of sympathetic origin. In some species, such as pig, glandular and perivascular parasympathetic nerves, probably of VIP/PHI nature, also contain NPY.
Pancreatic polypeptide (PP) and neuropeptide Y (NPY) belong to a family of regulatory peptides which hold a distinct tertiary structure, the PP-fold, even in dilute aqueous solution. High-affinity receptors, specific for both PP and NPY, are described on the rat phaeochromocytoma cell line, PC-12. The binding of [1251-Tyr76]PP to PC-I 2 cells was inhibited by concentrations of unlabeled PP which correspond to physiological concentrations of the hormone, 10~ir-10-9 mol/l. The affinity of the receptor for the neuropeptide, NPY, was 102-times lower than that of the PP receptor. C-terminal fragments of both PP (PP24m36) and NPY were between IO*-and IO'-times less potent in displacing the radiolabeled 36-amino-acid peptides from their respective receptors. It is concluded that PC-12 cells are suited for structure-function studies of the PP-fold peptides and studies on the cellular events following cellular binding of PP-fold peptides.
NeuropeptideY; Pancreatic polypeptide; 3-Dimensional peptide structure; (PC-12 cell)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.