Taking advantage of a large displacement-release experiment on a twostory reinforced concrete building located in Bagnoli (Naples, Italy), we performed free-field measurements using 3D seismometers, accelerometers, and a 100-m-long vertical array. The ground motion was noticeable: near the building, the acceleration exceeded 5% g. At each measurement point, it was possible to recognize two source terms, due to the tested building and to the reaction structure. The two sources generated different wave trains. High-frequency accelerations propagated as Rayleigh waves, whereas 1-2 Hz waves carrying most of the displacement propagated only as body waves. The experiment lends further support to the hypothesis that buildings are able to modify substantially the free-field ground motion in their proximity: the peak ground acceleration we observed is the 20% of the ground acceleration required to produce a displacement on the building equal to the one imposed during the release test. We recognize, however, the difficulty of a realistic modeling of wave propagation in the topmost layer of a densely urbanized area.
S U M M A R YA seismic-array study of the continental crust and upper mantle in the Ivrea-Verbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P-and S-wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.We have obtained a three-layer crustal seismic model. The P-wave velocity in the upper crust, lower crust and upper mantle is 6.1 f 0.2 km s-', 6.5 f 0.3 km s-' and 7.8 f 0.3 km s-' respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivreatype reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V,/V, ratio of 1.69 f0.04 for the upper crust and 1.82f0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.
Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m) operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale basement, and has a record of historical activity, including destruction of a small village in 1960. The site investigations include down-hole logging of P-and S-wave travel times at a new borehole drilled within the array, two seismic refraction lines with both P-wave profiling and surface-wave analyses, geo-electrical profiles and seismic noise measurements. From the different approaches a consistent picture of the depths and seismic velocities for the landslide has emerged. Their estimates agree with resonance frequencies of seismic noise, and also with the logged depths to basement of 25 m at a new borehole and of 44 m at a pre-existing borehole. Velocities for S waves increase with depth, from 230 m/s at the surface to 625 m/s in basement immediately below the landslide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.