Hydropower development in the Andean Amazon has been underestimated and will disrupt connected human and natural systems.
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating lung disorder of unknown origin, with very poor prognosis and no effective treatment. The disease is characterized by abnormal activation of alveolar epithelial cells, which secrete numerous mediators involved in the expansion of the fibroblast population, its differentiation to myofibroblasts, and in the exaggerated accumulation of extracellular matrix provoking the loss of lung architecture. Among the excessively produced mediators are several matrix metalloproteases (MMPs) which may contribute to modify the lung microenvironment by various mechanisms. Thus, these enzymes can not only degrade all the components of the extracellular matrix, but they are also able to release, cleave and activate a wide range of growth factors, cytokines, chemokines and cell surface receptors affecting numerous cell functions including adhesion, proliferation, differentiation, recruiting and transmigration, and apoptosis. Therefore, dysregulated expression of MMPs may have profound impact on the biopathological mechanisms implicated in the development of IPF. This review focuses on the current and emerging evidence regarding the role of MMPs on the fibrotic processes in IPF as well as in mouse models of lung fibrosis.
Using the most comprehensive fish occurrence database, we evaluated the importance of ecological and historical drivers in diversity patterns of subdrainage basins across the Amazon system. Linear models reveal the influence of climatic conditions, habitat size and sub-basin isolation on species diversity. Unexpectedly, the species richness model also highlighted a negative upriver-downriver gradient, contrary to predictions of increasing richness at more downriver locations along fluvial gradients. This reverse gradient may be linked to the history of the Amazon drainage network, which, after isolation as western and eastern basins throughout the Miocene, only began flowing eastward 1–9 million years (Ma) ago. Our results suggest that the main center of fish diversity was located westward, with fish dispersal progressing eastward after the basins were united and the Amazon River assumed its modern course toward the Atlantic. This dispersal process seems not yet achieved, suggesting a recent formation of the current Amazon system.
the amazon Basin is an unquestionable biodiversity hotspot, containing the highest freshwater biodiversity on earth and facing off a recent increase in anthropogenic threats. The current knowledge on the spatial distribution of the freshwater fish species is greatly deficient in this basin, preventing a comprehensive understanding of this hyper-diverse ecosystem as a whole. Filling this gap was the priority of a transnational collaborative project, i.e. the AmazonFish project -https://www.amazon-fish.com/. Relying on the outputs of this project, we provide the most complete fish species distribution records covering the whole Amazon drainage. The database, including 2,406 validated freshwater native fish species, 232,936 georeferenced records, results from an extensive survey of species distribution including 590 different sources (e.g. published articles, grey literature, online biodiversity databases and scientific collections from museums and universities worldwide) and field expeditions conducted during the project. This database, delivered at both georeferenced localities (21,500 localities) and sub-drainages grains (144 units), represents a highly valuable source of information for further studies on freshwater fish biodiversity, biogeography and conservation.Scientific Data | (2020) 7:96 | https://doi.collections from Peru 25,26 and by initiating sampling campaigns in detected gaps in Colombia, Peru and Brazil. All these spatial gaps in the database will also be prioritized in future updates through literature and web-based sources checking. Researchers holding fish distribution data from any of the current gaps or under-sampled areas (Fig. 2) and that wish to share these data are welcome to join the project. This information will be included with the complete source, after validation, in the next update of the database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.