Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200–500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING.
SummaryIncreased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N‐end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)‐cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N‐end rule pathway in vitro. Furthermore, we show that Nt‐Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen‐sensor reporter protein MCGGAIL‐GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N‐end rule pathway N‐recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia‐associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia‐related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia‐related genes and phenotypes similar to RNAi lines. We conclude that the N‐end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals.
No abstract
Forty-four protocols of doubled haploid production (DH) are presented in this Manual. They are related to at least 33 plant species, not counting protocols on production of DH from interspecific hybrids. The protocols provide procedures for production of DH in such major crops as wheat, maize, barley, rapeseed or potato and also in other crop species where this technology is more advanced, or in other words, where a relatively high frequency of doubled haploids was obtained. However, there have been several approaches to develop doubled haploids in many crops or plant species. We are presenting below the list of publications related to DH production in 226 additional plant species. This list does not include protocols of plant species published in Chapter 2 of this Manual. This means that efforts have been undertaken to develop doubled haploids in more than 250 plant species as the presented list was built on the basis of our own collection of related publications and as a result of searching in publicly available databases. It was impossible to cite all published information. We limited references to those which carried protocols or more recent information on DH production. In the cited papers, presented protocols did not always lead to the regeneration of haploid or doubled haploid plants. However, even negative results can be very helpful for someone who is initiating this work. We hope that publication of this list will help in further application of DH technology in crop improvement and basic research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.