BACKGROUND: Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. OBJECTIVE: Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. METHODS: We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). RESULTS: 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length.Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. CONCLUSIONS: Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.
Gait analysis is recognized as a useful assessment tool in the field of human movement research. However, doubts remain on its real effectiveness as a clinical tool, i.e. on its capability to change the diagnostic-therapeutic practice. In particular, the conditions in which evidence of a favorable cost-benefit ratio is found and the methodology for properly conducting and interpreting the exam are not identified clearly. To provide guidelines for the use of Gait Analysis in the context of rehabilitation medicine, SIAMOC (the Italian Society of Clinical Movement Analysis) promoted a National Consensus Conference which was held in Bologna on September 14th, 2013. The resulting recommendations were the result of a three-stage process entailing i) the preparation of working documents on specific open issues, ii) the holding of the consensus meeting, and iii) the drafting of consensus statements by an external Jury. The statements were formulated based on scientific evidence or experts' opinion, when the quality/quantity of the relevant literature was deemed insufficient. The aim of this work is to disseminate the consensus statements. These are divided into 13 questions grouped in three areas of interest: 1) General requirements and management, 2) Methodological and instrumental issues, and 3) Scientific evidence and clinical appropriateness. SIAMOC hopes that this document will contribute to improve clinical practice and help promoting further research in the field.
We have previously demonstrated that amyloid beta (Abeta) peptide is acutely toxic to retinal neurones in vivo and that this toxicity is mediated by an indirect mechanism. We have now extended these studies to look at the chronic effect of intravitreal injection of Abeta peptides on retinal ganglion cells (RGC), the projection neurones of the retina and the glial cell response. 5 months after injection of Abeta1-42 or Abeta42-1 there was no significant reduction in RGC densities but there was a significant reduction in the retinal surface area after both peptides. Phosphate-buffered saline (PBS) injection had no effect on retinal size or RGC density. There was a pronounced reduction in the number of large RGCs with a concomitant significant increase in medium and small RGCs. There was no change in cell sizes 5 months after injection with PBS. At 5 months after injection of both peptides, there was marked activation of Muller glial cells and microglia. There was also expression of the major histocompatibility complex (MHC) class II molecule on some of the microglial cells but we saw no evidence of T-cell infiltration into the injected retinas. In order to elucidate potential toxic mechanisms, we have looked at levels of glutamine synthetase and nitric oxide synthase. As early as 2 days after injection we noted that activation of Muller glia was associated with a decrease in glutamine synthetase immuno-reactivity but there was no detectable expression of inducible nitric oxide synthase in any retinal cells. These results suggest that chronic activation of glial cells induced by Abeta peptides may result in chronic atrophy of projection neurones in the rat retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.