The antimicrobial activity of fatty acids, monolaurin, citric, succinic, fumaric, malic and lactic acid was determined in cultures of two strains of Escherichia coli, three strains of Salmonella sp. and two strains of Clostridium perfringens. Antimicrobial activity was expressed as minimum inhibitory concentration (MIC) that prevented growth and glucose utilization in treated cultures. Caprylic acid was the only acid inhibiting glucose utilization in all cultures. Its MIC varied from 1 to 3 mg/ml. Strains CCM 3954 and CCM 4225 of E. coli were inhibited also by capric acid at 5 mg/ml. Strains CCM 4435<sup>T </sup>and CNCTC 5459 of Cl. perfringens were inhibited by medium-chain fatty acids (C<sub>8</sub> to C<sub>14</sub>), oleic acid and one strain also by linoleic acid. The minimum MICs were those of lauric and myristic acid (between 0.1 and 0.2 mg/ml). Growth of Cl. perfringens, but not other bacteria, was inhibited also by monoglyceride of lauric acid (MIC = 3 mg/ml), and by citric acid (MIC = 4 mg/ml). Inhibitory effects of other acids were not observed at 5 mg/ml. Caprylic and lauric acid did not influence the K<sup>+ </sup>permeability of the cytoplasmic membrane in cells of E. coli CCM 4225 and Cl. perfringens CCM 4435<sup>T</sup>, respectively. In cultures of both strains of E. coli treated with caprylic acid at 5 mg/ml, and in those of Cl. perfringens CCM 4435<sup>T </sup>treated with lauric acid at 1 mg/ml, or with its monoglyceride at 5 mg/ml, the transmission electron microscopy revealed damage of cytoplasmatic structures. In cells of Cl. perfringens the separation of inner and outer membranes was apparent, the integrity of the outer membrane, however, was maintained. It can be concluded that medium-chain fatty acids are more efficient antimicrobials than other, more polar organic acids tested.
Carotenoids are isoprenoids widely distributed in foods that have been always part of the diet of humans. Unlike the other so-called food bioactives, some carotenoids can be converted into retinoids exhibiting vitamin A activity, which is essential for humans. Furthermore, they are much more versatile as they are relevant in foods not only as sources of vitamin A, but also as natural pigments, antioxidants, and health-promoting compounds. Lately, they are also attracting interest in the context of nutricosmetics, as they have been shown to provide cosmetic benefits when ingested in appropriate amounts. In this work, resulting from the collaborative work of participants of the COST Action European network to advance carotenoid research and applications in agrofood and health (EUROCAROTEN, www.eurocaroten.eu, https://www.cost.eu/actions/CA15136/ #tabsjName:overview) research on carotenoids in foods and feeds is thoroughly reviewed covering aspects such as analysis, carotenoid food sources, carotenoid databases, effect of processing and storage conditions, new trends in carotenoid extraction, daily intakes, use as human, and feed additives are addressed. Furthermore, classical and recent patents regarding the obtaining and formulation of carotenoids for several purposes are pinpointed and briefly discussed. Lastly, emerging research lines as well as research needs are highlighted.
This review is focused on the most studied and developed substances which are commonly known as alternatives to dietary antibiotics, particularly as far as rabbit feeds are concerned. After a reminder of the reason to be and success of antibiotic growth promoters, and why they lately came to be banned in the European Union, we successively deal with probiotics, prebiotics, enzymes and organic acids. Data on rabbits are, as expected, quite scarce when compared to species such as pigs and poultry. Nevertheless, the available performance results are discussed together with the possible mechanisms of action. Special mention is made of the effects of these substances on digestibility and caecal activity.
Megasphaera elsdenii belongs to the group comprising the ruminal and intestinal lactate-and sugarfermenting species. In the present study the fermentation characteristics, metabolism of glucose and lactate, and susceptibility to antimicrobial agents of four ruminal strains were investigated. Particular attention was given to the mixed-substrate fermentation pattern and resultant fermentation acid profile. Lactate was utilized more rapidly than glucose in media with both carbon sources. Interaction of the two substrates changed the composition of fermentation end products toward more valerate and less propionate in cultures with glucose and lactate. Contrary to the indications in Bergey's Manual of Systematic Bacteriology, butyrate, not caproate, was the main end product of glucose metabolism. The strains examined were rather insensitive to many antimicrobial compounds, especially to ionophores and other antimicrobial feed additives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.