We present a novel method for three-dimensional optical data storage that has submicrometer size resolution, provides a large contrast in index of refraction, and is applicable to a wide range of transparent materials. Bits are recorded by use of a 0.65-N.A. objective to focus 100-fs laser pulses inside the material. The laser pulse produces a submicrometer-diameter structurally altered region with high contrast in index of refraction. We record binary information by writing such bits in multiple planes and read it out with a microscope objective with a short depth of field. We demonstrate data storage and retrieval with 2-microm in-plane bit spacing and 15-microm interplane spacing (17 Gbits/cm(3)). Scanning electron microscopy and atomic force microscopy show structural changes confined to an area 200 nm in diameter.
We investigated the effect of large (40 nm) graphene quantum dots (GQDs) in concanavalin A (Con A; 12 mg/kg i.v.)-induced mouse hepatitis, a T cell-mediated liver injury resembling fulminant hepatitis in humans. Intravenously injected GQDs (50 mg/kg) accumulated in liver and reduced Con A-mediated liver damage, as demonstrated by histopathological analysis and a decrease in liver lipid peroxidation and serum levels of liver transaminases. The cleavage of apoptotic markers caspase-3/PARP and mRNA levels of proapoptotic mediators Puma, Noxa, Bax, Bak1, Bim, Apaf1, and p21, as well as LC3-I conversion to autophagosome-associated LC3-II and expression of autophagy-related (Atg) genes Atg4b, Atg7, Atg12, and beclin-1, were attenuated by GQDs, indicating a decrease in both apoptosis and autophagy in the liver tissue. This was associated with the reduced liver infiltration of immune cells, particularly the T cells producing proinflammatory cytokine IFN-γ, and a decrease in IFN-γ serum levels. In the spleen of GQD-exposed mice, mRNA expression of IFN-γ and its transcription factor T-bet was reduced, while that of the IL-33 ligand ST2 was increased. The hepatoprotective effect of GQDs was less pronounced in ST2-deficient mice, indicating that it might depend on ST2 upregulation. In vitro, GQDs inhibited splenocyte IFN-γ production, reduced the activation of extracellular signal-regulated kinase in macrophage and T cell lines, inhibited macrophage production of the free radical nitric oxide, and reduced its cytotoxicity toward hepatocyte cell line HepG2. Therefore, GQDs alleviate immune-mediated fulminant hepatitis by interfering with T cell and macrophage activation and possibly by exerting a direct hepatoprotective effect.
Temperature and magnetic field dependences of electrical conductivity are systematically studied in granular films (Fe45Co45Zr10) x (Al2O3)100−x (28 ⩽ x ⩽ 64) containing crystalline metallic α-FeCo-based nanoalloy cores encapsulated in an amorphous oxide shell embedded in an amorphous Al2O3 matrix. Formation of ‘metallic core–oxide shell’ nanogranules is confirmed by transmission electron microscopy (TEM) and HRTEM. The structure of core and shell is governed with the difference in the oxidation states of Fe and Co ions investigated with EXAFS, XANES and Mössbauer spectroscopy. A considerable negative magnetoresistance (MR) effect of spin-dependent nature is observed in the whole range of x values. Its increase with decreasing temperature is correlated with the magnetic saturation of superparamagnetic metallic nanogranules. The enhanced MR effect in ‘core–shell’ granular films is related to the percolation of oxide shells and their influence through spin filtering processes. A considerable high field MR at low temperatures and the resulting deviation of MR and squared magnetization are attributed to a magnetic randomness and/or strong magnetic anisotropy of the magnetic oxide shell.
We report here the synthesis and the measurements of the microstructural and optical properties of a promising semiconductor, amorphous-iron disilicide. The material was obtained by ion-beam mixing of Fe layers on Si, with Ar8+ ions, at 300 °C. Optical absorption measurements indicate a semiconductor with a direct band gap of 0.88 eV. The significance of this discovery is that it demonstrates the existence of such a material. It should be possible to synthesize by other techniques and could be applied in large-area electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.