Local delivery of angiogenic growth factors for the treatment of myocardial ischemia has been well documented in various animal models, and clinical trials are now in progress. Our strategy was radically different, based on selective protection of some of the growth factors naturally present within the injured tissue. This protection was obtained by applying a chemically defined substitute for Dextran called RGTA11 (for ReGeneraTing Agent). RGTA is a family of agents, which has properties mimicking those of heparan sulfates toward heparin-binding growth factors (HBGF) and which stimulate tissue repair and protection. Indeed, we have previously shown that RGTA prevents most of the damage resulting from acute skeletal muscle ischemia [FASEB J. (1999) 13, 761-766]. We now show that the same agent can be used for the treatment of myocardial infarction. Acute myocardial infarction was induced in pigs by ligation of the left circumflex artery. One hour later, a single injection of 10 mg of RGTA11 was made in the center of the infarcted area. Three weeks later we observed 1) recovery of 84% of the initial left ventricular ejection fraction (only 55% in saline-treated controls), 2) an almost 50% reduction in the infarct size, 3) a reduction in fibrotic tissue formation, 4) significant preservation of myocytes, and 5) an increase in the number of blood vessels. The treatment of ischemic heart disease with RGTA would have clear advantages over other therapies such as growth factor, gene, or cell transplants, based on a stable, simple, and easy-to-develop chemical product.
Synthesis of collagens in vitro was studied on minced mouse skins incubated with [3H]-proline in organ-culture conditions. A comparative study was carried out on genetically diabetic mice (KK strain) and control mice (Swiss strain). After incubation, neutral-salt-soluble and acid-soluble collagens were extracted. The insoluble dermis was digested by pepsin and type I and type III collagens separated by differential precipitation in neutral salt solutions. Type I and Type III collagens were characterized by ion-exchange and molecular-sieve chromatography, amino acid analysis and by the characterization of CNBr peptides. In diabetic-mouse skin, the relative proportion of type III collagen was significantly higher than in control-mouse skin. The incorporation of radioactively labelled proline into hydroxyproline of type III collagen was significantly faster in diabetic-mouse skin than in control-mouse skin. No significant modifications in the total collagen content of the skin or of their rates of synthesis were observed between the two strains. Alteration in the ratio of type III to type I collagen in the diabetic-mouse skin can be interpreted as a sign of alteration of the regulation of collagen biosynthesis and may be related to the structural alterations observed in the diabetic intercellular matrix.
Human saphenous veins were cryopreserved in 4% human albumin and 10% dimethyl sulfoxide. The effect of cryopreservation on endothelial cells was studied in terms of the anticoagulant activity of thrombomodulin and in terms of cell proliferation. After storage for 2 weeks at -150 degrees C, 0.45 +/- 0.07 x 10(5) endothelial cells/cm2 were detected in cryopreserved veins and 1.03 +/- 0.04 x 10(5) endothelial cells/cm2 in fresh veins (p < 0.01). The thrombin-catalyzed activation of protein C decreased after cryopreservation, indicating altered thrombomodulin activity in the endothelial cells. On a cell number basis, the release of soluble thrombomodulin was three times higher from the cryopreserved endothelium than from the fresh endothelium (p< 0.05). The amount of spontaneous release of von Willebrand factor from the endothelial surface was not significantly different between fresh and cryopreserved veins. Endothelial cells were cultured from fresh veins and from their cryopreserved counterparts. On plating of endothelial cells in primary culture, the number of adhered cells was 0.9 +/- 0.09 x 10(3) cells/cm2 from fresh veins and 0.25 +/- 0.03 x 10(3) cells/cm2 from cryopreserved veins (p < 0.01). The positive immunohistochemical stain for von Willebrand factor indicated that the endothelial cell character was maintained after cryopreservation. The endothelial desquamation with loss of anticoagulant function and the slow proliferation of surviving cells in vitro suggest an impaired endothelial healing in vivo. The loss of anticoagulant activity complicates the problems of the exposure of thrombogenic subendothelial matrix to blood in implanted cryopreserved veins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.