This paper is intended to present firstly the current status at AIM on quantum well (QWIP) and antimonide superlattices (SL) detection modules for multi spectral ground and airborne applications in the high performance range i.e. for missile approach warning systems and secondly presents possibilities with long linear arrays i.e. 576x7 MCT to measure spectral selective in the 2 -11µm wavelength range.QWIP and antimonide based superlattice (SL) modules are developed and produced in a work share between AIM and the Fraunhofer Institute for Applied Solid State Physics (IAF). The sensitive layers are manufactured by the IAF, hybridized and integrated to IDCA or camera level by AIM. In case of MCT based modules, all steps are done by AIM.QWIP dual band or dual color detectors provide good resolution as long as integration times in the order of 5-10ms can be tolerated. This is acceptable for all applications where no fast motions of the platform or the targets are to be expected.For spectral selective detection, a QWIP detector combining 3-5 µm (MWIR) and 8-10 µm (LWIR) detection in each pixel with coincident integration has been developed in a 384x288x2 format with 40 µm pitch. Excellent thermal resolution with NETD < 30 mK @ F/2, 6.8 ms for both peak wavelengths (4.8 µm and 8.0 µm) has been achieved. Thanks to the well established QWIP technology, the pixel outage rates even in these complex structures are well below 0.5% in both bands. The spectral cross talk between the two wavelength bands is equal or less than 1%. The substrate on the sensitive layer of the FPA was completely removed in this case and as a consequence the optical crosstalk in the array usually observed in QWIP arrays resulting in low MTF values was suppressed resulting in sharp image impression.For rapidly changing scenes -like e.g. in case of missile warning applications for airborne platforms -a material system with higher quantum efficiency is required to limit integration times to typically 1ms. AIM and IAF selected antimonide based type II superlattices (SL) for such kind of applications. The type II SL technology provides -similar to QWIPs -an accurate engineering of sensitive layers by MBE with very good homogeneity and potentially good yield and resistivity against high temperature application i.e. under processing or storage. While promising results on single SL pixels have been reported since many years, so far no SL based detection module could be realized with reasonable performances. IAF and AIM last year managed to realize first most promising SL based detectors. Fully integrated IDCAs with a MWIR SL single color device with 256x256 pixels in 40 µm pitch have been integrated and tested. In the next step the pitch was reduced to 24µm in a 384x288 pixel configuration. With this design and further improved technology a very good pixel operabilities with very low cluster sizes (≤ 4 pixel) and performances with quantum efficiencies as high as known from MCT is reached in the meantime.A dual color device based on SL technology on the exist...
The 3rd generation of infrared (IR) detection modules is expected to provide advanced features like higher resolution 1024x1024 or 1280x720 pixels and/or new functions like multicolor or multi band capability, higher frame rates and better thermal resolution. This paper is intended to present the current status and trends at AIM on antimonide type II superlattices (SL) dual color detection module developments for ground and airborne applications in the high performance range, where rapidly changing scenes - like e.g. in case of missile warning applications for airborne platforms or ground based sniper detection systems - require temporal signal coincidence with integration times of typically 1ms. AIM and IAF selected antimonide based type II superlattices (SL) for such kind of applications. The type II SL technology provides - similar to QWIP's - an accurate engineering of sensitive layers by MBE with very good homogeneity and yield. IAF and AIM managed already to realize a dual color 384x288 IR module based on this technology. It combines spectral selective detection in the 3 - 4&mgr;m wavelength range and 4 - 5 &mgr;m wavelength range in each pixel with coincident integration in a 384x288x2 format and 40x40 &mgr;m2 pitch. Excellent thermal resolution with NETD < 12 mK @ F/2, 2.8 ms for the longer wavelength range (red band) and NETD < 22 mK @ F/2, 2.8 ms for the shorter wavelength range (blue band) were reported. In the meantime a square design of 256x256x2 pixel with a reduced pitch of 30x30 &mgr;m2 is in preparation. In this case with 2 Indium bumps per pixel and a third common contact for all pixels required for temporal coincidence is connected at the outer area of the array. The fill factor is approx. 65% for both wavelength ranges. The reduced size of the array enables the use of a smaller dewar with reduced cooling power and significantly reduced weight and broadens the scope of applications where weight and costs is essential. Design aspects and expected performances are discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.