The work is devoted to the study of sizes and concentrations of proteins, and their aggregates in blood plasma samples, using static and dynamic light scattering methods. A new approach is proposed based on multiple repetition of measurements of intensity size distribution and on counting the number of registrations of different sizes, which made it possible to obtain statistically confident particle sizes and concentrations in the blood plasma. It was revealed that statistically confident particle sizes in the blood plasma were stable during 30 h of observations, whereas the concentrations of particles of different sizes varied as a result of redistribution of material between them owing to the protein degradation processes.
In this paper, we studied the influence of nonmagnetic iron oxide nanoparticles on fibrin gel formation and its structure using dynamic light scattering. The surface of nanoparticles produced by a new method in acoustoplasma discharge with cavitation has specific morphology and accelerates the rate of fibrin gel formation, i.e., activates the enzyme thrombin. We studied changes in the form of autocorrelation functions of the scattered light intensity for fibrinogen-thrombin samples with different thrombin concentrations as well as the nanoparticles addition. Appearance of the power-law term in the function was an indicator of gel formation in the sample. Application of Martin’s theory allows estimating the exponent φ of power-law function and the contribution of the diffusive mode of protofibrils. We found that an increase in thrombin concentration or its activation with iron oxide nanoparticles leads to decreasing contribution of the diffusive mode, and increasing contribution of the exponent of power-law function. The values of fractal dimension Df calculated using Muthukumar’s theory are 1.61 ± 0.13 and 1.69 ± 1.11 for samples with low and high concentrations of thrombin respectively and 1.77 ± 0.08 for the sample with thrombin activated by nanoparticles. Such an increase in fractal dimension shows an increase in the complexity of the fibrin gel structure (or density).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.