Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy Appl. Phys. Lett. 99, 153116 (2011); 10.1063/1.3650937Label-free detection of oligonucleotide microarrays by oblique-incidence reflectivity difference method
We present a promising approach for the label-free characterization of genetic material. Time-resolved terahertz (THz) transmission analysis of polynucleotides demonstrate a strong dependence of the complex refractive index on the binding state (hybridized/denatured) of deoxyribonucleic acid (DNA) molecules. By monitoring THz transients, one can thus infer the binding state of oligo- and polynucleotides, and hence identify polynucleotides by detecting the binding of unknown polynucleotide DNA sequences to known probe molecules. A broadband experimental demonstration in a free-space configuration, as well as a discussion of the potential application for next generation gene chips is presented.
We demonstrate for the first time a fully integrated electro-optic modulator based on locally strained silicon rib-waveguides. By depositing a Si3N4 strain layer directly on top of the silicon waveguide the silicon crystal is asymmetrically distorted. Thus its inversion symmetry is broken and a linear electro-optic effect is induced. Electro-optic characterization yields a record high value χ(2)(yyz) = 122 pm/V for the second-order susceptibility of the strained silicon waveguide and a strict linear dependence between the applied modulation voltage V(mod) and the resulting effective index change Δn(eff). Spatially resolved micro-Raman and terahertz (THz) difference frequency generation (DFG) experiments provide in-depth insight into the origin of the electro-optic effect by correlating the local strain distribution with the observed second-order optical activity.
We report on a novel resonant THz sensor for the label-free analysis of DNA molecules. The sensor allows the direct detection of DNA-probe molecules at functionalized electrodes via hybridization. Subsequent time resolved photoconductive sampling of the THz transmission identifies the binding state between probe and target DNA. Integrating neighbouring sensors on a chip, this technique can be extended to a parallel analysis of multiple DNA sequences. A clearly readable sensor response is obtained with less then 40 fmol of 20-mer single-stranded DNA molecules, indicating at least a sevenfold sensitivity increase compared to previous approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.