On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
The Monitor of All-sky X-ray Image (MAXI) mission is the first astronomical payload to be installed on the Japanese Experiment Module — Exposed Facility (JEM-EF or Kibo-EF) on the International Space Station. It has two types of X-ray slit cameras with wide FOVs and two kinds of X-ray detectors consisting of gas proportional counters covering the energy range of 2 to 30 keV and X-ray CCDs covering the energy range of 0.5 to 12 keV. MAXI will be more powerful than any previous X-ray All Sky Monitor payloads, being able to monitor hundreds of Active Galactic Nuclei. A realistic simulation under optimal observation conditions suggests that MAXI will provide all-sky images of X-ray sources of $\sim $20 mCrab ($\sim $7 $\times$ 10$^{-10} $erg cm$^{-2} $s$^{-1}$ in the energy band of 2–30 keV) from observations during one ISS orbit (90 min), $\sim $4.5 mCrab for one day, and $\sim $2 mCrab for one week. The final detectability of MAXI could be $\sim $0.2 mCrab for two years, which is comparable to the source confusion limit of the MAXI field of view (FOV). The MAXI objectives are: (1) to alert the community to X-ray novae and transient X-ray sources, (2) to monitor long-term variabilities of X-ray sources, (3) to stimulate multi-wavelength observations of variable objects, (4) to create unbiased X-ray source cataloges, and (5) to observe diffuse cosmic X-ray emissions, especially with better energy resolution for soft X-rays down to 0.5 keV.
We report on the RXTE observations of the binary X-ray pulsar 4U 0115+63, covering an outburst in 1999 MarchApril with 44 pointings. The 3-30 keV PCA spectra and the 15-50 keV HEXTE spectra were analyzed jointly for cyclotron resonance features. When the 3-50 keV luminosity at an assumed distance of 7 kpc was in the range (5 13) ; 10 37 ergs s À1 , harmonic double cyclotron features were observed in absorption at $11 and $22 keV, as was measured previously during typical outbursts. As the luminosity decreased below $5 ; 10 37 ergs s À1 , the second resonance disappeared, and the fundamental resonance energy gradually increased, up to $16 keV at 0:16 ; 10 37 ergs s À1 . These results reconfirm the report by Mihara et al. using Ginga, who observed a single absorption at $16 keV in a minor ($10 37 ergs s À1 ) outburst of this object. The luminosity-dependent cyclotron resonance energy might possibly be understood as a result of a decrease in the accretion column height, in response to a decrease in the mass accretion rate. Subject headingg s: pulsars: individual (4U 0115+63) -X-rays: stars
The Gas Slit Camera (GSC) is an X-ray instrument on the MAXI (Monitor of All-sky X-ray Image) mission on the International Space Station. It is designed to scan the entire sky every 92-minute orbital period in the 2-30 keV band and to achieve the highest sensitivity among the X-ray all-sky monitors ever flown so far. The GSC employs large-area position-sensitive proportional counters with the total detector area of 5350 cm 2 . The on-board data processor has functions to format telemetry data as well as to control the high voltage of the proportional counters to protect them from the particle irradiation. The paper describes the instruments, on-board data processing, telemetry data formats, and performance specifications expected from the ground calibration tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.