A novel design technique is proposed for storage elements which are insensitive to radiation-induced single-event upsets. This technique is suitable for implementation in high density ASICs and static RAMs using submicron CMOS technology
ISBN: 076950146XThe increased operating frequencies, geometry shrinking and power supply reduction that accompany the process of very deep submicron scaling, affect the reliable operation of very deep submicron ICs. The effects of various noise sources are becoming of great concern. In particularly, it is predicted that single event upsets induced by alpha particles and cosmic radiation will become a cause of unacceptable error rates in future very deep submicron and nanometer technologies. This problem, concerning in the past more often parts used in space, will affect future ICs at sea level. This challenging problem has to be solved otherwise technological progress will be blocked soon. Thus, fault tolerant design is becoming necessary, even for commodity applications. But economic constraints of commodity applications exclude the use of traditional, high-cost fault tolerant techniques. This work uses time redundancy techniques to derive low cost soft-error tolerant implementations for logic networks
In nanometric technologies, circuits are increasingly sensitive to various kinds of perturbations. Soft errors, a concern for space applications in the past, became a reliability issue at ground level. Alpha particles and atmospheric neutrons induce single-event upsets (SEU), affecting memory cells, latches, and flip-flops, and single-event transients (SET), initiated in the combinational logic and captured by the latches and flip-flops associated to the outputs of this logic. To face this challenge, a designer must dispose a variety of soft error mitigation schemes adapted to various circuit structures, design architectures, and design constraints. In this paper, we describe various SEU and SET mitigation schemes that could help the designer meet her or his goals
In this paper, we present efficient self-checking implementations valid for all existing adder and arithmetic and logic unit (ALU) schemes (e.g., ripple carry, carry lookahead, skip carry schemes). Among all the known self-checking adder and ALU designs, the parity prediction scheme has the advantage that it requires the minimum hardware overhead for the adder/ALU and the minimum hardware overhead for the other data-path blocks. It also has the advantage to be compatible with memory systems checked by parity codes. The drawback of this scheme is that it is not fault secure for single faults. The scheme proposed in this work has all the advantages of the parity prediction scheme. In addition, the new scheme is totally self-checking for single faults. Thus, the new scheme is substantially better than any other known solution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.