The effect of superthermal electrons, modeled by a Lorentzian velocity distribution function, on the oblique propagation characteristics of linear and nonlinear ion-acoustic waves in an electron-ion plasma in the presence of a uniform external magnetic field is investigated. First, the linear dispersion relations of the fast and slow modes are obtained. It is shown that the superthermal electrons make both modes propagate with smaller phase velocities. Then, the Korteweg-de Vries equation describing the propagation of nonlinear slow and fast ion-acoustic waves is derived. It is shown that the presence of superthermal electrons has a significant influence on the nature of magnetized ion-acoustic solitons. That is, for a larger population of the superthermal electrons, the soliton velocity of both modes in the laboratory frame significantly decreases and the soliton are slimmer, and on approaching the Maxwellian limit, the width becomes maximum.
Recently, there have been many studies on solving different kinds of fuzzy equations. In this paper, the solution of a trapezoidal fully fuzzy linear system (FFLS) is studied. Uzawa approach, which is a popular iterative technique for saddle point problems, is considered for solving such FFLSs. In our Uzawa approach, it is possible to compute the solution of a fuzzy system using various relaxation iterative methods such as Richardson, Jacobi, Gauss-Seidel, SOR, SSOR as well as Krylov subspace methods such as GMRES, QMR and BiCGSTAB. Krylov subspace iterative methods are known to converge for a larger class of matrices than relaxation iterative methods and they exhibit higher convergence rates. Thus, they are more widely used in practical problems. Numerical experiments are to illustrate the performance of our suggested methods.
In this paper, the propagation of dust-ionacoustic (DIA) waves in a magnetized collisionless complex (dusty) plasma consisting of superthermal electrons are investigated. In the discharge plasma, the electron temperature is usually much greater than ion temperature. Thus, the electron distribution function DF), is generally nonmaxwellian, has to be modeled. For this purpose, the generalized Lorentzian (j)-DF is used to simulate the electron DF. Two types of modes (fast and slow DIA modes) exist in this plasma. By deriving Korteweg-de Vries (KdV) equation, using reductive perturbation method, both regions of solitary waves, rarefactive (dark) and compressive (bright) solitary waves, are allowed to be propagated in this plasma. Properties of DIA solitary waves are investigated numerically. How dust grains and superthermal electrons affect the sign and the magnitude of nonlinear coefficient of KdV equation is also discussed in detail. It is noted that the velocity, amplitude, and width of a DIA soliton is studied as well.
In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.