This paper presents an analysis of the power transfer between two DC circuit by use a single phase galvanically isolated dual active bridge -DAB. The analytical description of instantaneous values of the currents in both DC and in AC circuits of the DAB is done. The influence of the dead time as well as voltage drops across the transistors and diodes of the bridges is examined. The different relations between voltages of the DC circuits coupled through DAB and various phase shift ratios are considered. The analytical relations describing the average values of the currents in DC circuits are derived. These currents can be used to predict the power in both DC circuits and power losses generated in semiconductor devices of the converter. It is assumed that the voltage drops across these devices in conduction states are constant. The calculation of the transferred power as well as power losses and energy efficiency for the DAB converter power rated 5600 VA which is used to energy transfer between DC circuits 280 V and 51 V±20% is presented. The proposed relations and calculation results can be useful for preliminary evaluation of power losses generated in semiconductor devices and for design of the cooling system. Due to the high switching frequency of 100 kHz, the phase shift modulation for the control of DAB is used. To validate the theoretical investigations a few experimental results are presented.
This paper presents the implementation of a thermal camera for the quantitative estimation of power losses in a high frequency planar transformer (100 kHz/ 5600 VA). The methodology is based on the observation of the transient temperature rise and determination of the power losses by means of curves representing the derivative of temperature as a function of power losses dissipated in the transformer. First, the thermal calibration characteristics had to be obtained from a simple experiment, where power losses are generated by DC current in the ferrite core and windings. Next, experimental investigations focused on the determination of the transformer power losses for a short circuit and no load, with a resistive load and with the rectifier as a load were carried out. Finally, to verify the obtained results, analytical calculations based on Dowell's and modified Steinmetz's equations were additionally made, which showed a good convergence. The proposed method is easy to implement and can be used as an alternative to the calorimetric method which is time-consuming and requires a complicated measurement setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.