Abstract:We report a novel "single trench fiber" design for mode area scaling of the fundamental mode while offering effective single mode operation for a compact fiber laser device. This fiber design allows very high suppression of the higher order modes by offering high loss and power delocalization. It has the advantages of low cost and easy fabrication thanks to all solid fiber design, cylindrical symmetry, and higher refractive index of core as that of the cladding. A Yb-doped single trench fiber with a 40µm core diameter has been fabricated from modified chemical vapor deposition process in conjunction with solution-doping offering an effective mode area of as large as ~1,000µm 2 at 1060nm for the bend radius of 20cm. Detailed characterizations confirm a robust single mode behavior of the fiber. Comparative analysis with other fiber designs shows significant performance enhancement of effective single mode operation suitable for fiber laser applications.
We report a hybrid process by combining both vapor-phase and solution-doping techniques of rare-earth doped preform fabrication in conjunction with the MCVD technique, in order to fabricate highly efficient Tm-doped laser fibers. The proposed fabrication route takes advantage of co-doping silica with high alumina content through the vapor-phase doping process, which is otherwise difficult to achieve using conventional solution doping technique. In addition, by employing the solution doping method, high-purity thulium halide precursors that have low vapor pressures up to several hundred degree Celsius. These highpurity thulium halide precursors can be used to dope the fiber core region with a high thulium concentration that is optimized for an efficient two-for-one cross-relaxation process for 79xnm diode pumped thulium-doped fiber laser. Fibers fabricated using the hybrid approach show more homogeneous and flat-top dopant profiles, compared with the conventional approach, where both aluminum and thulium are incorporated in the core through solution doping. This will ensure that more doped region will take part in the cross-relaxation process. Superior laser performance with a slope efficiency of >70% in the two-micron band has been demonstrated when diode pumped at ~790nm.
The accepted industrial skills shortage in the subjects of science, technology, engineering and mathematics (STEM) in the United Kingdom has led to an increasing drive for universities to work with a wider pool of potential students. One contributor to this drive is the Lightwave Roadshow, a photonics-focused outreach program run by postgraduate students from the University of Southampton. The program has benefitted from the unique platform of the International Year of Light (IYL) 2015 for the development and support of hands-on and interactive outreach activities. In this report we review Lightwave activities facilitated by IYL that focused on widening participation for students aged 6 to 18 years from a multitude of societal categories; the roadshow has directly benefitted from the significance and investment into the IYL in conjunction with university recruitment strategies, local schools and the support of international organizations such as SPIE and OSA. Lightwave has used the foundation of the IYL to provide a wide range of activities for over 1,200 UK students in 53 different schools; the assessment tools used to measure learning outcomes, reach and impact are also discussed. The program's activities have been developed to make younger age groups the center of the outreach activity and create an environment which encourages youth pursuit of optics and science from a grassroots level upwards; to illustrate this we will outline a Lightwave project endorsed by the IYL steering committee to permit two 6 th form students to attend the IYL opening ceremony in Paris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.