Between approximately 17,500 and 15,000 years ago, the Atlantic meridional overturning circulation weakened substantially in response to meltwater discharges from disintegrating Northern Hemispheric glacial ice sheets. The global effects of this reorganization of poleward heat flow in the North Atlantic extended to Antarctica and the North Pacific. Here we present evidence from North Pacific paleo surface proxy data, a compilation of marine radiocarbon age ventilation records, and global climate model simulations to suggest that during the early stages of the Last Glacial Termination, deep water extending to a depth of approximately 2500 to 3000 meters was formed in the North Pacific. A switch of deepwater formation between the North Atlantic and the North Pacific played a key role in regulating poleward oceanic heat transport during the Last Glacial Termination.
Our understanding of the deglacial evolution of the Antarctic Ice Sheet (AIS) following the Last Glacial Maximum (26,000-19,000 years ago) is based largely on a few well-dated but temporally and geographically restricted terrestrial and shallow-marine sequences. This sparseness limits our understanding of the dominant feedbacks between the AIS, Southern Hemisphere climate and global sea level. Marine records of iceberg-rafted debris (IBRD) provide a nearly continuous signal of ice-sheet dynamics and variability. IBRD records from the North Atlantic Ocean have been widely used to reconstruct variability in Northern Hemisphere ice sheets, but comparable records from the Southern Ocean of the AIS are lacking because of the low resolution and large dating uncertainties in existing sediment cores. Here we present two well-dated, high-resolution IBRD records that capture a spatially integrated signal of AIS variability during the last deglaciation. We document eight events of increased iceberg flux from various parts of the AIS between 20,000 and 9,000 years ago, in marked contrast to previous scenarios which identified the main AIS retreat as occurring after meltwater pulse 1A and continuing into the late Holocene epoch. The highest IBRD flux occurred 14,600 years ago, providing the first direct evidence for an Antarctic contribution to meltwater pulse 1A. Climate model simulations with AIS freshwater forcing identify a positive feedback between poleward transport of Circumpolar Deep Water, subsurface warming and AIS melt, suggesting that small perturbations to the ice sheet can be substantially enhanced, providing a possible mechanism for rapid sea-level rise.
Since the beginning of the Industrial Revolution humans have released-1/4500 billion metric tons of carbon to the atmosphere through fossil-fuel burning, cement production and land-use changes. About 30% has been taken up by the oceans. The oceanic uptake of carbon dioxide leads to changes in marine carbonate chemistry resulting in a decrease of seawater pH and carbonate ion concentration, commonly referred to as ocean acidification. Ocean acidification is considered a major threat to calcifying organisms. Detecting its magnitude and impacts on regional scales requires accurate knowledge of the level of natural variability of surface ocean carbonate ion concentrations on seasonal to annual timescales and beyond. Ocean observations are severely limited with respect to providing reliable estimates of the signal-to-noise ratio of human-induced trends in carbonate chemistry against natural factors. Using three Earth system models we show that the current anthropogenic trend in ocean acidification already exceeds the level of natural variability by up to 30 times on regional scales. Furthermore, it is demonstrated that the current rates of ocean acidification at monitoring sites in the Atlantic and Pacific oceans exceed those experienced during the last glacial termination by two orders of magnitude. © 2012 Macmillan Publishers Limited. All rights reserved
[1] Using a biogeochemical ocean model that includes the iron cycle, we carry out preindustrial (control, CTL) and glacial (Last Glacial Maximum, LGM) climate simulations focusing on changes in export production (EP). The model successfully reproduces general trends of a paleoclimate reconstruction of EP at the LGM except over the Atlantic Ocean. By conducting a series of sensitivity simulations, we investigate the mechanism controlling EP at the LGM in each basin. In the Southern Ocean, the model successfully reproduces the dipole pattern of the paleoreconstruction: the higher-latitude decrease and lower-latitude increase of EP. It is found that the lower-latitude increase of EP comes from iron fertilization effects by enhanced dust deposition, while the higher-latitude decrease of EP is caused by the reduction of surface shortwave due to spreading of sea ice there. We also find that increased dust input in other basins remotely affects EP in the Southern Ocean. In the Pacific Ocean, the model suggests that iron fertilization effects are dominant in open ocean regions. In the Atlantic Ocean, the model simulates overall reduction of EP, whereas the paleoreconstruction suggests the increase in some regions. We propose that the Atlantic response is strongly affected by distribution of iron limitation in a control climate. In our CTL simulation, the biological production is limited not by iron but by phosphate in the Atlantic Ocean, which leads to the decrease of EP in spite of the significant increase of dust deposition there. It is implied that the accurate evaluation of iron limitation in the present ocean is critical for evaluating changes in EP and associated reduction of atmospheric CO 2 concentration at the LGM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.