Abstract:The capability to monitor water status from crops on a regular basis can enhance productivity and water use efficiency. In this paper, high-resolution thermal imagery acquired by an unmanned aerial vehicle (UAV) was used to map plant water stress and its spatial variability, including sectors under full irrigation and deficit irrigation over nectarine and peach orchards at 6.12 cm ground sample distance. The study site was classified into sub-regions based on crop properties, such as cultivars and tree training systems. In order to enhance the accuracy of the mapping, edge extraction and filtering were conducted prior to the probability modelling employed to obtain crop-property-specific ('adaptive' hereafter) lower and higher temperature references (T wet and T dry respectively). Direct measurements of stem water potential (SWP, ψ stem ) and stomatal conductance (g s ) were collected concurrently with UAV remote sensing and used to validate the thermal index as crop biophysical parameters. The adaptive crop water stress index (CWSI) presented a better agreement with both ψ stem and g s with determination coefficients (R 2 ) of 0.72 and 0.82, respectively, while the conventional CWSI applied by a single set of hot and cold references resulted in biased estimates with R 2 of 0.27 and 0.34, respectively. Using a small number of ground-based measurements of SWP, CWSI was converted to a high-resolution SWP map to visualize spatial distribution of the water status at field scale. The results have important implications for the optimal management of irrigation for crops.
Partial rootzone drying (PRD) is a new irrigation strategy whereby water is withheld from part of the rootzone while another part is well watered. A successful PRD strategy should reduce tree water use through stomatal control of transpiration and reduce vegetative growth while maintaining fruit size and yield. A field experiment examined crop water relations and production performance of PRD in a commercial apple orchard on loam soil in the Goulburn Valley, Australia. The orchard consisted of high-density (1420 trees/ha) 8-year-old ‘Pink Lady’ apple trees trained as central leader and irrigated by microjets. The effects of PRD on leaf/stem water potential, vegetative growth, yield components and fruit quality were investigated during two seasons (2001–02, Year 1 and 2002–03, Year 2). The 2-year average growing season reference crop evapotranspiration and rainfall was 954 and 168 mm, respectively. Three irrigation treatments were established: (1) deficit irrigation (DI, supplied 50% of water to a fixed side of tree); (2) PRD supplied 50% of water to alternating sides of tree; (3) and conventional irrigation (CI, supplied 100% water to both sides of tree). Irrigation inputs under the CI treatment were 334 and 529 mm for Year 1 and Year 2, respectively. In Year 1, the volume of irrigation applied to CI treatment inputs equated to the replacement of predicted crop evapotranspiration (ETc) based on a mid-season FAO-56 crop coefficient with adjustment for tree size. Vegetative growth, fruit production and water status showed both PRD and DI treatments led to a classical ‘deficit irrigation’ water stress response. Leaf water potential, leaf conductance, fruit size, shoot growth and yield were reduced on PRD and DI trees compared to the fully watered (CI) trees. In Year 2, CI inputs exceeded estimated ETc by 2-fold. Consequently, minimal or no differences between irrigation regimes were measured in stem water potential, vegetative growth, yield components and fruit quality. Fruit disorders (sunburn, russet, misshape, markings, frost damage) were not affected by irrigation regime in either season. We contend that further effort is required to determine under what circumstances or environments there is a PRD response that saves water and maintains yield and quality for apple.
Continuous assessment of plant water status indicators provides the most precise information for irrigation management and automation, as plants represent an interface between soil and atmosphere. This study investigated the relationship of plant water status to continuous fruit diameter (FD) and inverse leaf turgor pressure rates ( p p ) in nectarine trees [ Prunus persica (L.) Batsch] throughout fruit development. The influence of deficit irrigation treatments on stem ( Ψ stem ) and leaf water potential, leaf relative water content, leaf stomatal conductance, and fruit growth was studied across the stages of double-sigmoidal fruit development in ‘September Bright’ nectarines. Fruit relative growth rate (RGR) and leaf relative pressure change rate (RPCR) were derived from FD and p p to represent rates of water in- and outflows in the organs, respectively. Continuous RGR and RPCR dynamics were independently and jointly related to plant water status and environmental variables. The independent use of RGR and RPCR yielded significant associations with midday Ψ stem , the most representative index of tree water status in anisohydric species. However, a combination of nocturnal fruit and leaf parameters unveiled an even more significant relationship with Ψ stem , suggesting a changing behavior of fruit and leaf water flows in response to pronounced water deficit. In conclusion, we highlight the suitability of a dual-organ sensing approach for improved prediction of tree water status.
Biophysical fruit growth depends on a balance among the vascular and transpiration flows entering/exiting the fruit via phloem, xylem and through the epidermis. There is no information on vascular flows of Japanese plums, a species characterized by high-sugar content of its fruit at harvest. Vascular flows of Angeleno plums were monitored by fruit gauges during late fruit development, under the dry environment of the Goulburn Valley, Victoria, Australia. Phloem, xylem flows and skin transpiratory losses were determined, as well as diurnal leaf, stem and fruit pressure potentials. Fruit seasonal development, skin conductance and dry matter accumulation were also monitored. Fruit grew following a double-sigmoid pattern, but fruit size increased only 3.1 g over the last 3 weeks of development. Fruit grew very little in the morning, primarily due to phloem inflows (0.05 g fruit -1 hr -1 ), while water left the fruit via the xylem. Negligible skin transpiration was recorded for vapor pressure deficit (VPD) values below 3 kPa. This growth pattern, in the absence of skin transpiration, suggests apoplastic phloem unloading. However, at VPD values over 3 kPa (e.g. from early afternoon to a peak around 18:00 hour), transpiratory losses through the skin (up to 0.25 g fruit -1 hr -1 ) caused fruit to shrink, leading to enhanced phloem and xylem inflows (ca. 0.15 g fruit -1 hr -1 ), a scenario that would correspond to symplastic phloem unloading. Over 24 hours the fruit showed a slightly negative total growth, consistent with fruit growth measured in situ during the season at weekly intervals. A few fruit species are known to alter their phloem unloading mechanism, switching from symplastic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.