Aims. We present a novel method for studying the thermal emission of exoplanets as a function of orbital phase at very high spectral resolution, and use it to investigate the climate of the ultra-hot Jupiter KELT-9b. Methods. We combine three nights of HARPS-N and two nights of CARMENES optical spectra, covering orbital phases between quadratures (0.25 < ϕ < 0.75), when the planet shows its day-side hemisphere with different geometries. We co-add the signal of thousands of Fe i lines through cross-correlation, which we map to a likelihood function. We investigate the phase-dependence of two separate observable quantities, namely (i) the line depths of Fe i and (ii) their Doppler shifts, introducing a new method that exploits the very high spectral resolution of our observations. Results. We confirm a previous detection of Fe i emission, and demonstrate a precision of 0.5 km s −1 on the orbital properties of KELT-9b when combining all nights of observations. By studying the phase-resolved Doppler shift of Fe i lines, we detect an anomaly in the planet's orbital radial velocity well-fitted with a slightly eccentric orbital solution (e = 0.016 ± 0.003, ω = 150 +13 • −11 , 5σ preference). However, we argue that this anomaly is caused by atmospheric circulation patterns, and can be explained if neutral iron gas is advected by day-to-night atmospheric wind flows of the order of a few km s −1 . We additionally show that the Fe i emission line depths are symmetric around the substellar point within 10 • (2σ), possibly indicating the lack of a large hot-spot offset at the altitude probed by neutral iron emission lines. Finally, we do not obtain a significant preference for models with a strong phase-dependence of the Fe i emission line strength. We show that these results are qualitatively compatible with predictions from general circulation models (GCMs) for ultra-hot Jupiter planets. Conclusions. Very high-resolution spectroscopy phase curves are of sufficient sensitivity to reveal a phase dependence in both the line depths and their Doppler shifts throughout the orbit. They constitute an under-exploited treasure trove of information that is highly complementary to space-based phase curves obtained with HST and JWST, and open a new window onto the still poorly understood climate and atmospheric structure of the hottest planets known to date.
Earth's magnetosphere extension is controlled by solar activity level via solar wind properties. Understanding such a relation in the Solar System is useful to predict the condition of exoplanetary magnetosphere near Sun-like stars. We use measurements of a chromospheric proxy, the Ca II K index, and solar wind OMNI parameters to connect the solar activity variations on the decennial time scales to solar wind properties. The dataset span over the time interval 1965-2021, which almost entirely covers the last 5 solar cycles. Using both cross-correlation and mutual information analysis, a 3.2-year lag of the solar wind speed with respect to the Ca II K index is found. Analogously, a 3.6-year lag is found with respect to the dynamic pressure. A correlation between the solar wind dynamic pressure and the solar UV emission is therefore found and used to derive the Earth's magnetopause standoff distance. Moreover, the advantage of using a chromospheric proxy, such as the Ca II K index, opens the possibility to extend the relation found for the Sun to Sun-like stars, by linking stellar variability to stellar wind properties. The model is applied to a sample of Sun-like stars as a case study, where we assume the presence of an Earth-like exoplanet at 1 AU. Finally, we compare our results with previous estimates of the magnetosphere extension for the same set of sun-like stars.
The Earth’s magnetosphere extension is controlled by the solar activity level via solar wind properties. Understanding such a relation in the Solar System is important for predicting also the condition of exoplanetary magnetospheres near Sun-like stars. We use measurements of a chromospheric proxy, the Ca ii K index, and solar wind OMNI parameters to connect the solar activity variations, on the decennial time scales, to the solar wind properties. The data span over the time interval 1965-2021, which almost entirely covers the last 5 solar cycles. Using both cross-correlation and mutual information analysis, a 3.2-year lag of the solar wind speed with respect to the Ca ii K index is found. Analogously, a 3.6-year lag is found once considering the dynamic pressure. A correlation between the solar wind dynamic pressure and the solar UV emission is found and used to derive the Earth’s magnetopause standoff distance. Moreover, the advantage of using a chromospheric proxy, such as the Ca ii K index, opens the possibility to extend the relation found for the Sun to Sun-like stars, by linking stellar variability to stellar wind properties. The model is applied to a sample of Sun-like stars as a case study, where we assume the presence of an Earth-like exoplanet at 1 AU. Finally, we compare our results with previous estimates of the magnetosphere extension for the same set of Sun-like stars.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.