An experiment was conducted at Institute of Agriculture and Animal Science (IAAS), Rampur, Nepal during July 2011 to September 2011 with an objectine to determine phenotypic variability of Nepalese finger millet landraces using descriptive statistics, cluster analysis and principal component analysis. F- Value of REML procedure of mixed model analysis revealed that highly significant variation was observed in all studied 17 traits. Grain yield per plant was positive and highly significant correlated with grain yield per ear (0.769**) followed by plant height (0.529**), productive tillers number (0.473**), days to maturity (0.471**), days to heading (0.460**), days to flowering (0.457**), straw yield per plant (0.348**), finger number per ear (0.320**), thousand kernel weight (0.281**), flag leaf sheath width (0.230**) and finger length (0.211**). The ear shape (H’= 3.42) followed by grain color (H’= 3.35) showed high genetic diversity after estimated by using Shannon- Weaver index. 46% open type ear shape, 40% light brown grain color, 66% non-pigmentation, 70% absence of inflorescence branch and 54% absence of finger branch were found dominant to other on studied accessions. The distribution pattern was observed by using Ward’s minimumvariance method into five clusters. The number of accessions in a cluster was ranged from 18 in cluster IV to 1 in cluster V. The cluster V (accession no. 10996) and III (accessions no. 431 and 11024) showed early phenological traits, lowest in finger length, finger width, finger number per ear, thousand kernel weight, grain yield per ear and grain yield per plant. The cluster II and IV showed late maturity type, long finger length and width, high in finger number per ear, grain yield per ear, grain yield per plant and plant height. The first five principal components accounted for 74.9% of total variance among 50 accessions. Most of variation was contributed from phenological characters, plant height, grain yield per ear, finger length, finger width, finger number per ear and productive tillers number. These traits were positively correlated with grain yield and can be used in selection for breeding programs.Int J Appl Sci Biotechnol, Vol 3(2): 285-290 DOI: http://dx.doi.org/10.3126/ijasbt.v3i2.12413
Although Nepal produces a large amount of mandarin it faces huge postharvest losses due to improper postharvest practices. Treating fruits with different edible coatings can minimize postharvest losses. The experiment was carried out in the horticulture lab of Prithu Technical College, Dang, Nepal to evaluate the effects of different edible coating materials on the postharvest quality of mandarin. The experiment was laid in Complete Randomized Design (CRD) with three replications and seven treatments in each replication. Mandarins were coated with different edible coating materials i.e. paraffin wax (100%, 75% and 50%), mustard oil, Aloe vera, turmeric paste and control (non-coated). After coating with different edible materials, mandarins were kept at ambient room conditions (18±2℃ and 52.41±14.35%). The lowest physiological loss in weight at 7, 14and 21 days was recorded in mandarin coated with 75% paraffin wax which was 3.10%, 4.83% and 10.33%, respectively. The highest titratable acidity (0.68%), juice content (46.33%) and marketable fruit percentage (81.73%) were recorded in 75% paraffin wax. The highest total soluble solid (14.00 ˚Brix) was recorded in control. Based on the result obtained from our research, it is suggested to use 75% paraffin wax for the storage of mandarin at ambient room conditions (18±2℃ and 52.41±14.35% RH) as it gives a high percentage of marketable fruits and juice content and also minimizes the physiological loss in weight.
Finger millet (Eleusine coracana (L.) Gaertn.) is the fourth most important crop in Nepal having multiple benefits but is still neglected by mainstream research and development. The main option to boost its productivity is developing superior varieties through enhanced use of germplasm in breeding programmes. With the objective of enhancing utilization of landraces conserved ex situ, a total of 300 finger millet accessions collected from 54 districts were characterized in three hill locations of Nepal for two consecutive years (2017–2018). Nine qualitative and 17 quantitative traits were recorded, and combined mean data were subjected to multivariate analysis to assess agromorphological diversity. Shannon–Weaver diversity indices (H') showed high diversity (0.647–0.908) among the accessions for qualitative traits except for finger branching and spikelet shattering whereas high diversity (0.864–0.907) was observed for all quantitative traits. The first five principal components (PC) explained 61.8% of the total phenotypic variation with two PCs explaining 37.5% variation mainly due to flowering and maturity days, plant height, flag leaf length, grain and straw yield, ear weight, ear exsertion and number of fingers per head. Genotypes were grouped into four clusters with 16, 66, 107 and 111 accessions based on quantitative traits. The correlation between the traits indicated that accessions with early flowering, tall plants, long leaves, high tillers, large ears and bold grains could be given priority for further evaluation in multiple locations. Potential landraces identified for each trait could either be deployed to wider areas as varieties or used as trait donors in finger millet breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.