The experimental dosimetry of a high dose rate (HDR) 192Ir source used for the brachytherapy of peripheral vessels is reported. The direct determination of the reference air kerma rate Kr agrees, within the experimental uncertainty, with the results obtained by a well ionization chamber calibrated at the NIST and the manufacturer's certification. A highly sensitive (HS) radiochromic film (RCF), that presents only one active layer, was used for the source dosimetry in a water phantom. The adopted experimental set-up, with the source in its catheter positioned on the RCF plane, seems to have given better accuracy of the RCF optical density measurements. The agreement between the measurement of the dose rate constant DKr (10 mm, pi/2) and the literature data confirmed the coherence of the HS RCF calibration obtained by the kerma in air measurements. The RCF measurements supplied dosimetric information about the dose to water per reference air kerma rate D(r, theta)/Kr along the source transverse bisector axis, the radial dose function g(r) and the anisotropy function F(r, theta). The value D(2 mm, pi/2)/Kr = 22.4 +/- 1.2 cGy h(-1)/(microGy h(-1)) is supplied with a dose uncertainty that is essentially due to the indeterminacy of the source position in the catheter. The data of the radial and anisotropy functions have been compared with Monte Carlo determinations reported in the literature.
In 2008, the European project ‘T2.J06, Increasing cancer treatment efficacy using 3D brachytherapy’ was launched. One of the main goals of the Joint Research Project was the experimental determination of the dose rate constant Λ to allow the linkage between the air kerma strength or reference air kerma rate currently used for the source characterization and the ‘new’ absorbed dose rate to water with an uncertainty of <3% (k = 1) for some selected brachytherapy sources. The results obtained by five National Metrology Institutes (NMI) for four different types of brachytherapy sources are presented and compared with consensus data published in the literature. A further goal of the project was to develop a calibration chain for the transfer of the new reference quantity to the end user, minimizing the uncertainty. A first direct calibration in terms of absorbed dose rate to water of a secondary standard and the dissemination to the hospitals is presented.
The factor Kwall to correct for photon attenuation and scatter in the wall of ionization chambers for 60Co air-kerma measurement has been traditionally determined by a procedure based on a linear extrapolation of the chamber current to zero wall thickness. Monte Carlo calculations by Rogers and Bielajew (1990 Phys. Med. Biol. 35 1065-78) provided evidence, mostly for chambers of cylindrical and spherical geometry, of appreciable deviations between the calculated values of Kwall and those obtained by the traditional extrapolation procedure. In the present work an experimental method other than the traditional extrapolation procedure was used to determine the Kwall factor. In this method the dependence of the ionization current in a cylindrical chamber was analysed as a function of an effective wall thickness in place of the physical (radial) wall thickness traditionally considered in this type of measurement. To this end the chamber wall was ideally divided into distinct regions and for each region an effective thickness to which the chamber current correlates was determined. A Monte Carlo calculation of attenuation and scatter effects in the different regions of the chamber wall was also made to compare calculation to measurement results. The Kwall values experimentally determined in this work agree within 0.2% with the Monte Carlo calculation. The agreement between these independent methods and the appreciable deviation (up to about 1%) between the results of both these methods and those obtained by the traditional extrapolation procedure support the conclusion that the two independent methods providing comparable results are correct and the traditional extrapolation procedure is likely to be wrong. The numerical results of the present study refer to a cylindrical cavity chamber like that adopted as the Italian national air-kerma standard at INMRI-ENEA (Italy). The method used in this study applies, however, to any other chamber of the same type.
A key comparison has been made between the air-kerma standards of the ENEA, Italy and the BIPM in the medium-energy x-ray range. The results show the standards to be in general agreement at the level of the expanded uncertainty (k = 2) of the comparison of 6.2 parts in 10 3. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database.
The results of an unprecedented international effort involving 26 countries are reported. The EUROMET.RI(I)-K1 and EUROMET.RI(I)-K4 key comparisons were conducted with the goal of supporting the relevant calibration and measurement capabilities (CMC) planned for publication by the participant laboratories. The measured quantities were the air kerma (Kair) and the absorbed dose to water (Dw) in 60Co radiotherapy beams. The comparison was conducted by the pilot laboratory MKEH (Hungary), in a star-shaped arrangement from January 2005 to December 2008. The calibration coefficients of four transfer ionization chambers were measured using two electrometers. The largest deviation between any two calibration coefficients for the four chambers in terms of air kerma and absorbed dose to water was 2.7% and 3.3% respectively. An analysis of the participant uncertainty budgets enabled the calculation of degrees of equivalence (DoE), in terms of the deviations of the results and their associated uncertainties. As a result of this EUROMET project 813 comparison, the BIPM key comparison database (KCDB) will include eleven new Kair and fourteen new Dw DoE values of European secondary standard dosimetry laboratories (SSDLs), and the KCDB will be updated with the new DoE values of the other participant laboratories. The pair-wise degrees of equivalence of participants were also calculated. In addition to assessing calibration techniques and uncertainty calculations of the participants, these comparisons enabled the experimental determinations of NDw/NKair ratios in the 60Co gamma radiation beam for the four radiotherapy transfer chambers.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.