Systematic studies of the deformation mechanisms of multilayer transition metal nitride coatings TiN/CrN, TiN/NbN, and NbN/CrN, and corresponding reference coatings of TiN, NbN, and CrN deposited by a direct current (dc) magnetron sputtering process onto silicon h100i have been performed. Mechanical characterization was conducted using a combination of microindentation and nanoindentation in the load range 30 to 150 mN and 0.5 to 3.5 mN, respectively. For both load ranges, scanning electron microscopy (SEM) in situ indentation was used to observe the indentation process including any pileup, sink-in, and fracture mechanisms specific to each coating. The coatings' microstructure, both before and after indentation, was analyzed using transmission electron microscopy (TEM). It was possible to both correlate the indentation load-displacement response to surface roughness effects and fracture modes (substrate and film cracking) and observe deformation mechanisms within the coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.