Robust nanostructures for future devices will depend increasingly on their reliability. While great strides have been achieved for precisely evaluating electronic, magnetic, photonic, elasticity and strength properties, the same levels for fracture resistance have been lacking. Additionally, one of the self‐limiting features of materials by computational design is the knowledge that the atomistic potential is an appropriate one. A key property in establishing both of these goals is an experimentally‐determined effective surface energy or the work per unit fracture area. The difficulty with this property, which depends on extended defects such as dislocations, is measuring it accurately at the sub‐micrometer scale. In this Full Paper the discovery of an interesting size effect in compression tests on silicon pillars with sub‐micrometer diameters is presented: in uniaxial compression tests, pillars having a diameter exceeding a critical value develop cracks, whereas smaller pillars show ductility comparable to that of metals. The critical diameter is between 310 and 400 nm. To explain this transition a model based on dislocation shielding is proposed. For the first time, a quantitative method for evaluating the fracture toughness of such nanostructures is developed. This leads to the ability to propose plausible mechanisms for dislocation‐mediated fracture behavior in such small volumes.
In nanoindentation, the occurrence of cracks, pileup, sink-in, or film delamination adds additional complexity to the analysis of the load-displacement curves. Many techniques and analysis methods have been used to extract both qualitative and quantitative information from the indentation test both during and after the test. Much of this information is obtained indirectly or may even be overlooked by current testing methods (e.g., cracks that open only during the loading cycle of the test may go unnoticed from a typical residual indentation analysis). Here we report on the development of a miniature depth-sensing nanoindentation instrument and its integration into a high-resolution scanning electron microscope. Real-time observation of the nanoindentation test via scanning electron microscopy allows for visualization and detection of certain events such as crack initiation, pileup, or sink-in, and other material deformation phenomena. Initial results from aluminum 〈100〉 and a thin gold film (∼225 nm) are presented.
The purpose of this article is to present the design and capabilities of two in situ scanning electron microscope (SEM) indentation instruments covering a large load range from microN to N. The capabilities and advantages of in situ SEM indentation are illustrated by two applications: indentation of a thin film and a nanowire. All the experiments were performed on electrodeposited cobalt, whose outstanding magnetic properties make it a candidate material for MEMS and NEMS devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.