Properties of Ga2O3 thin films deposited by electron-beam evaporation from a high-purity single-crystal Gd3Ga5O12 source are reported. As-deposited Ga2O3 films are amorphous, stoichiometric, and homogeneous. Excellent uniformity in thickness and refractive index was obtained over a 2 in. wafer. The films maintain their integrity during annealing up to 800 and 1200 °C on GaAs and Si substrates, respectively. Optical properties including refractive index (n=1.84–1.88 at 980 nm wavelength) and band gap (4.4 eV) are close or identical, respectively, to Ga2O3 bulk properties. Reflectivities as low as 10−5 for Ga2O3/GaAs structures and a small absorption coefficient (≊100 cm−1 at 980 nm) were measured. Dielectric properties include a static dielectric constant between 9.9 and 10.2, which is identical to bulk Ga2O3, and electric breakdown fields up to 3.6 MV/cm. The Ga2O3/GaAs interface demonstrated a significantly higher photoluminescence intensity and thus a lower surface recombination velocity as compared to Al2O3/GaAs structures.
Interface properties of Ga2O3–GaAs structures fabricated using in situ multiple-chamber molecular beam epitaxy have been investigated. The oxide films were deposited on clean, atomically ordered (100) GaAs surfaces at ≂600 °C by electron-beam evaporation using a Gd3Ga5O12 single-crystal source. Metal–insulator–semiconductor structures have been fabricated in order to characterize the Ga2O3–GaAs interface by capacitance–voltage measurements in quasistatic mode and at frequencies between 100 Hz and 1 MHz. The formation of inversion layers in both n and p-type GaAs has been clearly established. Using the quasistatic/high frequency technique, the interface state density has been derived as a function of band gap energy and a midgap interface state density in the mid 1010 cm−2 eV−1 range has been inferred. Charge trapping in the oxide has been revealed as the dominant trapping mechanism.
We have fabricated high quality, dielectric Ga2O3 thin films. The films with thicknesses between 40 and 4000 Å were deposited by electron-beam evaporation using a single-crystal high purity Gd3Ga5O12 source. Metal-insulator-semiconductor (MIS) and metal-insulator-metal structures (MIM) were fabricated in order to determine dielectric properties, which were found to depend strongly on deposition conditions such as substrate temperature and oxygen pressure. We obtained excellent dielectric properties for films deposited at substrate temperatures of 40 °C with no excess oxygen and at 125 °C with an oxygen partial pressure of 2×10−4 Torr. Specific resistivities ρ and dc breakdown fields Em of up to 6×1013 Ω cm and 2.1 MV/cm, respectively, were measured. Static dielectric constants between 9.93 and 10.2 were determined for these films. Like in other dielectrics, the current transport mechanisms are found to be bulk rather than electrode controlled.
Articles you may be interested inBiaxially strained extremely-thin body In0.53Ga0.47As-on-insulator metal-oxide-semiconductor field-effect transistors on Si substrate and physical understanding on their electron mobility
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.