Milk coagulation properties (MCP) are conventionally measured using computerized renneting meters, mechanical or optical devices that record curd firmness over time (CF(t)). The traditional MCP are rennet coagulation time (RCT, min), curd firmness (a(30), mm), and curd-firming time (k(20), min). The milk of different ruminant species varies in terms of CF(t) pattern. Milk from Holstein-Friesian and some Scandinavian cattle breeds yields higher proportions of noncoagulating samples, samples with longer RCT and lower a(30), and samples for which k(20) is not estimable, than does milk from Brown Swiss, Simmental, and other local Alpine breeds. The amount, proportion, and genetic variants (especially κ-casein) of milk protein fractions strongly influence MCP and explain variable proportions of the observed differences among breeds and among individuals of the same breed. In addition, other major genes have been shown to affect MCP. Individual repeatability of MCP is high, whereas any herd effect is low; thus, the improvement of MCP should be based principally on selection. Exploitable additive genetic variation in MCP exists and has been assessed using different breeds in various countries. Several models have been formulated that either handle noncoagulating samples or not. The heritability of MCP is similar to that of other milk quality traits and is higher than the heritability of milk yield. Rennet coagulation time and a(30) are highly correlated, both phenotypically and genetically. This means that the use of a(30) data does not add valuable information to that obtainable from RCT; both traits are genetically correlated mainly with milk acidity. Moreover, a(30) is correlated with casein content. The major limitations of traditional MCP can be overcome by prolonging the observation period and by using a novel CF(t) modeling, which uses all available information provided by computerized renneting meters and allows the estimation of RCT, the potential asymptotic curd firmness, the curd-firming rate, and the syneresis rate. Direct measurements of RCT obtained from both mechanical and optical devices show similar heritabilities and exhibit high phenotypic and genetic correlations. Moreover, mid-infrared reflectance spectroscopy can predict MCP. The heritabilities of predicted MCP are higher than those of measured MCP, and the 2 sets of values are strongly correlated. Therefore, mid-infrared reflectance spectroscopy is a reliable and cheap method whereby MCP can be improved at the population level; this is because such spectra are already routinely acquired from the milk of cows enrolled in milk recording schemes.
Interest in methods that routinely and accurately measure and predict animal characteristics is growing in importance, both for quality characterization of livestock products and for genetic purposes. Mid-infrared spectroscopy (MIRS) is a rapid and cost-effective tool for recording phenotypes at the population level. Mid-infrared spectroscopy is based on crossing matter by electromagnetic radiation and on the subsequent measure of energy absorption, and it is commonly used to determine traditional milk quality traits in official milk laboratories. The aim of this review was to focus on the use of MIRS to predict new milk phenotypes of economic relevance such as fatty acid and protein composition, coagulation properties, acidity, mineral composition, ketone bodies, body energy status, and methane emissions. Analysis of the literature demonstrated the feasibility of MIRS to predict these traits, with different accuracies and with margins of improvement of prediction equations. In general, the reviewed papers underlined the influence of data variability, reference method, and unit of measurement on the development of robust models. A crucial point in favor of the application of MIRS is to stimulate the exchange of data among countries to develop equations that take into account the biological variability of the studied traits under different conditions. Due to the large variability of reference methods used for MIRS calibration, it is essential to standardize the methods used within and across countries.
This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000-900 cm(-1)) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a(30), mm), TA (SH degrees/50 mL; SH degrees = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm(-1). Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm(-1), 3,040 to 1,700 cm(-1), and 4,000 to 3,470 cm(-1). The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a(30), range 58 mm), 0.25 SH degrees/50 mL (TA, range 3.58 SH degrees/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R(2) = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R(2) = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.
Hyperketonemia (HYK) is one of the most frequent and costly metabolic disorders in high-producing dairy cows and its diagnosis is based on β-hydroxybutyrate (BHB) concentration in blood. In the last 10 years, the number of papers that have dealt with the impact of elevated BHB levels in dairy cattle has increased. Therefore, this paper reviewed the recent literature on BHB concentration in blood and milk, and its relationships with dairy cow health and performance, and farm profitability. Most studies applied the threshold of 1.2 mmol/l of BHB concentration in blood to indicate HYK; several authors considered BHB concentrations between 1.2 and 2.9 mmol/l as subclinical ketosis, and values ⩾3.0 mmol/l as clinical ketosis. Results on HYK frequency (prevalence and incidence) and cow performance varied according to parity and days in milk, being greater in multiparous than in primiparous cows, and in the first 2 weeks of lactation than in later stages. Hyperketonemia has been associated with greater milk fat content, fat-to-protein ratio and energy-corrected milk, and lower protein and urea nitrogen in milk. The relationships with milk yield and somatic cell count are still controversial. In general, HYK impairs health of dairy cows by increasing the risk of the onset of other early lactation diseases, and it negatively affects reproductive performance. The economic cost of HYK is mainly due to impaired reproductive performance and milk loss. From a genetic point of view, results from the literature suggested the feasibility of selecting cows with low susceptibility to HYK. The present review highlights that milk is the most promising matrix to identify HYK, because it is easy to sample and allows a complete screening of the herd through BHB concentration predicted using mid-IR spectroscopy during routine milk recording. Further research is needed to validate accurate and convenient methods to discriminate between cows in risk of HYK and healthy animals in field conditions and to support farmers to achieve an early detection and minimise the economic losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.