A light-induced photoluminescence (PL) enhancement in surface-deposited methylammonium lead iodide (CH3NH3PbI3) perovskites was investigated in detail using time-resolved luminescence microscopy. We found the PL intensity to increase up to three orders of magnitude upon light illumination with an excitation power density of 0.01-1 W cm(-2). The PL enhancement is accompanied by an increase of the PL lifetime from several nanoseconds to several hundred nanoseconds and also by an increase of the initial amplitude of the PL decay. The latter suggests excited state quenching at the subpicosecond timescale. We propose a model where the trapping sites responsible for non-radiative charge recombination can be de-activated by a photochemical reaction involving oxygen. The reaction zone is spatially limited by the excitation light-penetration depth and diffusion length of the charge carriers. The latter increases in the course of the light-curing process making the reaction zone spreading from the surface towards the interior of the crystal. The PL enhancement can be reversed by switching on/off the excitation light or switching the atmosphere between oxygen and nitrogen. Slow diffusion of the reactants and products and equilibrium between the active and "cured" trapping sites are proposed to be the reasons for peculiar responses of PL to such varied experimental conditions.
Fluorescence super-resolution microscopy showed correlated fluctuations of photoluminescence intensity and spatial localization of individual perovskite (CH3NH3PbI3) nanocrystals of size ∼200 × 30 × 30 nm(3). The photoluminescence blinking amplitude caused by a single quencher was a hundred thousand times larger than that of a typical dye molecule at the same excitation power density. The quencher is proposed to be a chemical or structural defect that traps free charges leading to nonradiative recombination. These trapping sites can be activated and deactivated by light.
Liquid transportation fuels must burn cleanly and have high energy densities, criteria that are currently fulfilled by petroleum, a non-renewable resource, the combustion of which leads to increasing levels of atmospheric CO(2). An attractive approach for the production of transportation fuels from renewable biomass resources is to convert carbohydrates into alkanes with targeted molecular weights, such as C(8)-C(15) for jet-fuel applications. Targeted n-alkanes can be produced directly from fructose by an integrated process involving first the dehydration of this C(6) sugar to form 5-hydroxymethylfurfural, followed by controlled formation of C-C bonds with acetone to form C(9) and C(15) compounds, and completed by hydrogenation and hydrodeoxygenation reactions to form the corresponding n-alkanes. Analogous reactions are demonstrated starting with 5-methylfurfural or 2-furaldehyde, with the latter leading to C(8) and C(13) n-alkanes.
Inelastic proton scattering to the first excited 2+ state of the doubly magic ' Ni nucleus was investigated in inverse kinematics, using a secondary beam of radioactive Ni nuclei. At an incident energy of 101 MeV/nucleon, a value B(E2, 0+ 2+) = 600~120 e~fm4 was measured. This result completes the set of experimental data for the first excited 2+ states in the 1f 2p shell with a closed shell of neutrons or protons. These data are compared to recent shell-model calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.