Constitutional mutations of the WT1 gene, encoding a zinc-finger transcription factor involved in renal and gonadal development, are found in most patients with Denys-Drash syndrome (DDS), or diffuse mesangial sclerosis (DMS) associated with pseudohermaphroditism and/or Wilms tumor (WT). Most mutations in DDS patients lie in exon 8 or exon 9, encoding zinc finger 2 or zinc finger 3, respectively, with a hot spot (R394W) in exon 9. We analyzed a series of 24 patients, 10 with isolated DMS (IDMS), 10 with DDS, and 4 with urogenital abnormalities and/or WT. We report WT1 heterozygous mutations in 16 patients, 4 of whom presented with IDMS. One male and two female IDMS patients with WT1 mutations underwent normal puberty. Two mutations associated with IDMS are different from those described in DDS patients. No WT1 mutations were detected in the six other IDMS patients, suggesting genetic heterogeneity of this disease. We analyzed genotype/phenotype correlations, on the basis of the constitution of a WT1 mutation database of 84 germ-line mutations, to compare the distribution and type of mutations, according to the different symptoms. This demonstrated (1) the association between mutations in exons 8 and 9 and DMS; (2) among patients with DMS, a higher frequency of exon 8 mutations among 46, XY patients with female phenotype than among 46,XY patients with sexual ambiguity or male phenotype; and (3) statistically significant evidence that mutations in exons 8 and 9 preferentially affect amino acids with different functions.
Comparative investigations of odontogenic cells in normally forming teeth and tumors may provide insights into the mechanisms of the differentiation process. The present study is devoted to late phenotypic markers of ameloblast and odontoblast cells, i.e., proteins involved in biomineralization. The in situ expression of amelogenins, keratins, collagens type III and IV, vimentin, fibronectin, osteonectin, and osteocalcin was performed on normal and tumor odontogenic human cells. The pattern of protein expression showed some similarities between ameloblasts and odontoblasts present in normally developing human teeth and cells present in neoplastic tissues of ameloblastic fibroma, ameloblastic fibro-odontomas, and complex odontomas. Amelogenins (for ameloblasts) and osteocalcin (for odontoblasts) were detected in cells with well-organized enamel and dentin, respectively. In contrast, "mixed" cells located in epithelial zones of mixed odontogenic tumors co-expressed amelogenins and osteocalcin, as shown by immunostaining. The presence of osteocalcin transcripts was also demonstrated by in situ hybridization in these cells. Keratins and vimentin were detected in the same epithelial zones. Tumor epithelial cells were associated with various amounts of polymorphic matrix (amelogenin- and osteocalcin-immunoreactive), depending on the types of mixed tumors. No osteocalcin labeling was found in epithelial tumors. This study confirms that the differentiation of normal and tumor odontogenic cells is accompanied by the expression of some common molecules. Furthermore, the gene products present in normal mesenchymal cells were also shown in odontogenic tumor epithelium. These data may be related to a tumor-specific overexpression of the corresponding genes transcribed at an undetectable level during normal development and/or to an epithelial-mesenchymal transition proposed to occur during normal root formation. A plausible explanation for the results is that the odontogenic tumor epithelial cells are recapitulating genetic programs expressed during normal odontogenesis, but the tumor cells demonstrate abnormal expression patterns for these genes.
Mast cells are detrimental in several inflammatory diseases; however, their physiological roles are also increasingly recognized. Recent data suggest that mast cells may also be involved in renal diseases. We therefore used congenitally mast cell-deficient W/Wv mice and normal +/+ littermates to assess their role in anti-glomerular basement membrane-induced glomerulonephritis. Following administration of anti-glomerular basement membrane Abs, W/Wv mice exhibited increased mortality as compared with +/+ mice owing to rapid deterioration of renal function. Reconstitution of the mast cell population in W/Wv mice restored protection. This was independent of activating FcγR, as protection was also obtained using mast cells deficient in FcRγ. Comparative histological analysis of kidneys showed that deterioration of renal function was caused by the presence of thick layers of subendothelial glomerular deposits in W/Wv mice, while +/+ mice or mast cell-reconstituted W/Wv mice showed significantly less. Deposits appeared during the early phase of disease and persisted thereafter, and were accompanied by enhanced macrophage recruitment. Immunohistochemical analysis revealed increased amounts of fibrin and type I collagen in W/Wv mice, which were also unable to maintain high tissue plasminogen activator and urinary-type plasminogen activator activity in urine in the heterologous phase of disease. Our results indicate that mast cells by their ability to mediate remodeling and repair functions are protective in immune complex-mediated glomerulonephritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.