High-energy ion beams are successfully used in cancer therapy and precisely deliver high doses of ionizing radiation to small deep-seated target volumes. A similar noninvasive treatment modality for cardiac arrhythmias was tested here. This study used high-energy carbon ions for ablation of cardiac tissue in pigs. Doses of 25, 40, and 55 Gy were applied in forced-breath-hold to the atrioventricular junction, left atrial pulmonary vein junction, and freewall left ventricle of intact animals. Procedural success was tracked by (1.) in-beam positron-emission tomography (PET) imaging; (2.) intracardiac voltage mapping with visible lesion on ultrasound; (3.) lesion outcomes in pathohistolgy. High doses (40–55 Gy) caused slowing and interruption of cardiac impulse propagation. Target fibrosis was the main mediator of the ablation effect. In irradiated tissue, apoptosis was present after 3, but not 6 months. Our study shows feasibility to use high-energy ion beams for creation of cardiac lesions that chronically interrupt cardiac conduction.
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns. K: Beam-line instrumentation (beam position and profile monitors, beam-intensity monitors, bunch length monitors); Spectrometers; Gas systems and purification; Neutrino detectors A X P : 2103.04755Neutrino-mass mode. This is the standard mode of operation to continually adjust the retarding voltage of the MS in the range of [ 0 − 40 eV; 0 + 50 eV] while tritium is in the system. This scanning range can be adjusted if required. The voltage and the time spent at each setting are defined by the Measurement Time Distribution (MTD) (figure 3). A typical run at a given voltage lasts between 20 s and 600 s; a full scan of the energy range given above takes about 2 h. Of these standard neutrino-mass runs, a small portion will be dedicated to sterile neutrino searches. These searches involve scanning much farther (order of keV) below the endpoint 0 .Calibration mode. To check the long-term system stability, calibration measurements are done regularly. The neutrino-mass mode is suspended for the duration of these measurement:• An energy calibration of the FPD (section 6) is performed weekly, which requires closing off the detector system from the main beamline for about 4 h.• The offset and the gain correction factor of the low-voltage readout in the high-voltage measurement chain needs to be calibrated based on standard reference sources (section 5.3.4). This requires stopping the precision monitoring of the MS retarding potential twice per week for about 0.5 h each.
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer ("Main Spectrometer"), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3 , and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 • C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 −11 mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.
Purpose: The use of motion mitigation techniques such as tracking and gating in particle therapy requires real-time knowledge of tumor position with millimeter precision. The aim of this phantom-based study was to evaluate the option of diagnostic ultrasound (US) imaging (sonography) as real-time motion detection method for scanned heavy ion beam irradiation of moving targets. Methods: For this pilot experiment, a tumor surrogate was moved inside a water bath along two-dimensional trajectories. A rubber ball was used for this purpose. This ball was moved by a robotic arm in two dimensions lateral to the heavy ion beam. Trajectories having a period of 3 s and peak to peak amplitude of 20 mm were used. Square radiation fields of 3×3cm2 were irradiated on radiosensitive films with a 200 MeV/u beam of calcium ions having a FWHM of 6 mm. Pencil beam scanning and beam tracking were employed. The films were attached on the robotic arm and thus moved with the rubber ball. The position of the rubber ball was continuously measured by a US tracking system (Mediri GmbH, Heidelberg) and sent to the GSI therapy control system (TCS). This position was used as tracking vector. Position reconstruction from the US tracking system and data communication introduced a delay leading to a position error of several millimeters. An artificial neural network (ANN) was implemented in the TCS to predict motion from US measurements and thus to compensate for the delay. Results: Using ANN delay compensation and large motion amplitudes, the authors could produce irradiation patterns with a few percent inhomogeneity and about 1 mm geometrical conformity. Conclusions: This pilot experiment suggests that diagnostic US should be further investigated as dose-free, high frame-rate, and model-independent motion detection method for scanning heavy ion beam irradiation of moving targets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.