In the present paper, the structural and electrical performances of microcrystalline silicon (lc-Si:H) single junction solar cells codeposited on a series of substrates having different surface morphologies varying from V-shaped to U-shaped valleys, are analyzed. Transmission electron microscopy (TEM) is used to quantify the density of cracks within the cells deposited on the various substrates. Standard 1 sun, variable illumination measurements (VIM) and Dark J(V) measurements are performed to evaluate the electrical performances of the devices. A marked increase of the reverse saturation current density (J 0 ) is observed for increasing crack densities. By introducing a novel equivalent circuit taking into account such cracks as non-linear shunts, the authors are able to relate the magnitude of the decrease of V oc and FF to the increasing density of cracks.
Microcrystalline silicon (mc-Si:H) cells can reach efficiencies up to typically 10% and are usually incorporated in tandem micromorph devices. When cells are grown on rough substrates, ''cracks'' can appear in the mc-Si:H layers. Previous works have demonstrated that these cracks have mainly detrimental effects on the fill factor and open-circuit voltage, and act as bad diodes with a high reverse saturation current. In this paper, we clarify the nature of the cracks, their role in postoxidation processes, and indicate how their density can be reduced. Regular secondary ion mass spectrometry (SIMS) and local nano-SIMS measurements show that these cracks are prone to local post-oxidation and lead to apparent high oxygen content in the layer. Usually the number of cracks can be decreased with an appropriate modification of the substrate surface morphology, but then, the required light scattering effect is reduced due to a lower roughness. This study presents an alternative/complementary way to decrease the crack density by increasing the substrate temperature during deposition. These results, also obtained when performing numerical simulation of the growth process, are attributed to the enhanced surface diffusion of the adatoms at higher deposition temperature. We evaluate the cracks density by introducing a fast method to count cracks with good statistics over approximately 4000 mm of sample cross-section. This method is proven to be useful to quickly visualize the impact of substrate morphology on the density of cracks in microcrystalline and in micromorph devices, which is an important issue in the manufacturing process of modules.
Silicon oxide films containing CdS quantum dots have been deposited on glass substrates by a sol-gel dip-coating process. Hereby the CdS nanocrystals are grown during the thermal annealing step following the dip-coating procedure. Total hemispherical transmittance and reflectance measurements were carried out by means of a spectrophotometer coupled to an integrating sphere. For CdS-rich films, an absorption edge at photon energies in the vicinity of the band gap value of bulk CdS is observed. For lower CdS concentrations, the absorption edge shifts to higher photon energies, as expected for increasing quantum confinement. The samples show visible photoluminescence which is concentrated by total internal reflection and emitted at the edges of the substrate. The edge emission has been characterized by angle-dependent photoluminescent (PL) spectroscopy. Information on the lateral energy transport within the sample can be extracted from spectra obtained under spatial variation of the spot of excitation. The color of the photoluminescence can be tuned by varying the annealing temperature which governs crystal growth and thus the cluster size distribution. The characteristic features observed in the PL spectra clearly exhibit a blueshift for lower annealing temperatures, confirming the presence of quantum size effects.Advantages of the proposed concept of quantum dot containing coatings on glass panes for photoluminescent solar concentrators are the high potential for low-cost fabrication on the large scale and the suitability for architectural integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.