Be stars are main-sequence massive stars with emission features in their spectrum, which originates in circumstellar gaseous discs. Even though the viscous decretion disc (VDD) model can satisfactorily explain most observations, two important physical ingredients, namely the magnitude of the viscosity (α) and the disk mass injection rate, remain poorly constrained. The light curves of Be stars that undergo events of disc formation and dissipation offer an opportunity to constrain these quantities. A pipeline was developed to model these events that uses a grid of synthetic light curves, computed from coupled hydrodynamic and radiative transfer calculations. A sample of 54 Be stars from the OGLE survey of the Small Magellanic Cloud (SMC) was selected for this study. Because of the way our sample was selected (bright stars with clear disc events), it likely represents the densest discs in the SMC. Like their siblings in the Galaxy, the mass of the disc in the SMC increases with the stellar mass. The typical mass and angular momentum loss rates associated with the disk events are of the order of ∼10 −10 M yr −1 and ∼5 × 10 36 g cm 2 s −2 , respectively. The values of α found in this work are typically of a few tenths, consistent with recent results in the literature and with the ones found in dwarf novae, but larger than current theory predicts. Considering the sample as a whole, the viscosity parameter is roughly two times larger at build-up ( α bu = 0.63) than at dissipation ( α d = 0.26). Further work is necessary to verify whether this trend is real or a result of some of the model assumptions.
We analyzed V -band photometry of the Be star ω CMa, obtained during the last four decades, during which the star went through four complete cycles of disc formation and dissipation. The data were simulated by hydrodynamic models based on a timedependent implementation of the viscous decretion disc (VDD) paradigm, in which a disc around a fast-spinning Be star is formed by material ejected by the star and driven to progressively larger orbits by means of viscous torques. Our simulations offer a good description of the photometric variability during phases of disc formation and dissipation, which suggests that the VDD model adequately describes the structural evolution of the disc. Furthermore, our analysis allowed us to determine the viscosity parameter α, as well as the net mass and angular momentum (AM) loss rates. We find that α is variable, ranging from 0.1 to 1.0, not only from cycle to cycle but also within a given cycle. Additionally, build-up phases usually have larger values of α than the dissipation phases. Furthermore, during dissipation the outward AM flux is not necessarily zero, meaning that ω CMa does not experience a true quiescence but, instead, switches between a high to a low AM loss rate during which the disc quickly assumes an overall lower density but never zero. We confront the average AM loss rate with predictions from stellar evolution models for fast-rotating stars, and find that our measurements are smaller by more than one order of magnitude.
Context. Be stars are important reference laboratories for the investigation of viscous Keplerian discs. In some cases, the disc feeder mechanism involves a combination of non-radial pulsation (NRP) modes. Aims. We seek to understand whether high-cadence photometry can shed further light on the role of NRP modes in facilitating rotation-supported mass loss. Methods. The BRITE-Constellation of nanosatellites obtained mmag photometry of 28 Cygni for 11 months in 2014–2016. We added observations with the Solar Mass Ejection Imager (SMEI) in 2003–2010 and 118 Hα line profiles, half of which were from 2016. Results. For decades, 28 Cyg has exhibited four large-amplitude frequencies: two closely spaced frequencies of spectroscopically confirmed g modes near 1.5 c/d, one slightly lower exophotospheric (Štefl) frequency, and at 0.05 c/d the difference (Δ) frequency between the two g modes. This top-level framework is indistinguishable from η Cen (Paper I), which is also very similar in spectral type, rotation rate, and viewing angle. The circumstellar (Štefl) frequency alone does not seem to be affected by the Δ frequency. The amplitude of the Δ frequency undergoes large variations; around maximum the amount of near-circumstellar matter is increased and the amplitude of the Štefl frequency grows by a factor of a few. During such brightenings dozens of transient spikes appear in the frequency spectrum; these spikes are concentrated into three groups. Only 11 frequencies were common to all years of BRITE observations. Conclusions. Be stars seem to be controlled by several coupled clocks, most of which are not very regular on timescales of weeks to months but function for decades. The combination of g modes to the slow Δ variability and/or the atmospheric response to it appears significantly non-linear. As in η Cen, the Δ variability seems to be mainly responsible for the modulation of the star-to-disc mass transfer in 28 Cyg. A hierarchical set of Δ frequencies may reach the longest known timescales of the Be phenomenon.
PurposeTo compare the performance of OKULIX ray-tracing software with SRK-T and Hoffer Q formula in intraocular lens (IOL) power calculation in patients presenting with cataract.MethodsIn this prospective study, 104 eyes of 104 patients with cataract who underwent phacoemulsification and IOL implantation were recruited. Three IOL brands were used and for all eyes, IOL power calculation was performed using SRK-T, Hoffer Q formula and also OKULIX ray-tracing software. For all patients, axial length and keratometry data was obtained with IOLMaster 500 device and IOL power was determined using Hoffer Q and SRK-T formula. The IOL powers were also calculated using the OKULIX ray-tracing software combined with CASIA AS-OCT and IOLMaster 500 device. Optically measured axial length of eyes were inserted to OKULIX software from IOLMaster 500 device, and anterior and posterior tomographic and corneal pachymetry data was imported from CASIA AS-OCT into the OKULIX.The performance of each calculation methods was measured by subtracting the predicted postoperative refraction from the postoperative manifest refraction spherical equivalent (MRSE). For each of the 3 methods, the mean absolute prediction error was determined, too.ResultsThe mean value absolute prediction error by OKULIX, SRK-T and Hoffer Q formulas, respectively, were 0.42 (±0.03), 0.36 (±0.02) and 0.37 (±0.02). The mean absolute prediction error by OKULIX had no significant difference between three IOL groups (P = 0.96), and it was confirmed that there was no meaningful statistically difference in mean absolute prediction error between the OKULIX, SRK-T and Hoffer Q formula. (P = 0.25). Also in each group of implanted IOLs, all three formulas worked with the same accuracy. The prediction error using OKULIX were within ±0.50 diopter in 63.5% of eyes and within ±1.00 diopter in 94.2% of eyes.ConclusionOKULIX ray-tracing IOL power measurements provides reliable and satisfactory postoperative results, which are comparable to other 3rd generation formulas of SRK-T and Hoffer Q.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.