Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between γ Doradus (γ Dor), δ Scuti (δ Sct), and hybrid stars. Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each star and extract the pulsational frequencies using different frequency analysis methods. We construct two new observables, "energy" and "efficiency", related to the driving energy of the pulsation mode and the convective efficiency of the outer convective zone, respectively. Results. We propose three main groups to describe the observed variety in pulsating A-F type stars: γ Dor, δ Sct, and hybrid stars. We assign 63% of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of different spectral type, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much higher fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the γ Dor and δ Sct range, also between 5 and 10 d −1 , which is a challenge for the current models. We find indications for the existence of δ Sct and γ Dor stars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the δ Sct and γ Dor instability strips and beyond. Non-variable stars seem to exist within the instability strips. The location of γ Dor and δ Sct classes in the (T eff , log g)-diagram has been extended. We investigate two newly constructed variables, "efficiency" and "energy", as a means to explore the relation between γ Dor and δ Sct stars. Conclusions. Our results suggest a revision of the current observational instability strips of δ Sct and γ Dor stars and imply an investigation of pulsation mechanisms to supplement the κ mechanism and convective blocking effect to drive hybrid pulsations. Accurate physical parameters for all stars are needed to confirm these findings.
The analysis of the light curves of 48 B‐type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies, characteristic of slowly pulsating B (SPB) stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/β Cephei (β Cep) hybrids. In all cases, the frequency spectra are quite different from what is seen from ground‐based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid‐B stars. We find that there are non‐pulsating stars within the β Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the δ Sct instability strips. None of the stars shows the broad features which can be attributed to stochastically excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve.
The Kepler space mission provided near-continuous and high-precision photometry of about 207,000 stars, which can be used for asteroseismology. However, for successful seismic modelling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A-and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe i, and Fe ii lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and λ Boo types. The distribution of the projected rotational velocity, v sin i, is typical for A and F stars and ranges from 8 to about 280 km s −1 , with a mean of 134 km s −1 .
Context. The β Cephei stars have been studied for over a hundred years. Despite this, many interesting problems related to this class of variable stars remain unsolved. Fortunately, these stars seem to be well-suited to asteroseismology. Hence, the results of seismic analysis of β Cephei stars should help us to better understand pulsations and the main sequence evolution of massive stars, particularly the effect of rotation on mode excitation and internal structure. It is therefore extremely important to increase the sample of known β Cephei stars and select targets that are useful for asteroseismology. Aims. We analysed ASAS-3 photometry of bright early-type stars with the goal of finding new β Cephei stars. We were particularly interested in β Cephei stars that would be good for seismic analysis, i.e., stars that (i) have a large number of excited modes; (ii) show rotationally split modes; (iii) are components of eclipsing binary systems; (iv) have low-frequency modes, that is, are hybrid β Cephei/SPB stars. Methods. Our study was made with a homogeneous sample of over 4100 stars having MK spectral type B5 or earlier. For these stars, the ASAS-3 photometry was analysed by means of a Fourier periodogram. Results. We have discovered 103 β Cephei stars, nearly doubling the number of previously known stars of this type. Among these stars, four are components of eclipsing binaries, seven have modes equidistant or nearly equidistant in frequency. In addition, we found five β Cephei stars that show low-frequency periodic variations, very likely due to pulsations. We therefore regard them as candidate hybrid β Cephei/SPB pulsators. All these stars are potentially very useful for seismic modeling. Moreover, we found β Cephei-type pulsations in three late O-type stars and fast period changes in one, HD 168050.
Context. Detached eclipsing binaries (dEBs) are ideal targets for accurately measuring the masses and radii of their component stars. If at least one of the stars has evolved off the main sequence (MS), the masses and radii give a strict constraint on the age of the stars. Several dEBs containing a bright K giant and a fainter MS star have been discovered by the Kepler satellite. The mass and radius of a red giant (RG) star can also be derived from its asteroseismic signal. The parameters determined in this way depend on stellar models and may contain systematic errors. It is important to validate the asteroseismically determined mass and radius with independent methods. This can be done when stars are members of stellar clusters or members of dEBs. Aims. This paper presents an analysis of the dEB system KIC 8410637, which consists of an RG and an MS star. The aim is to derive accurate masses and radii for both components and provide the foundation for a strong test of the asteroseismic method and the accuracy of the deduced mass, radius, and age. Methods. We analysed high-resolution, high-signal-to-noise spectra from three different spectrographs. We also calculated a fit to the Kepler light curve and used ground-based photometry to determine the flux ratios between the component stars in the BVRI passbands. Results. We measured the masses and radii of the stars in the dEB, and the classical parameters T eff , log g, and [Fe/H] from the spectra and ground-based photometry. The RG component of KIC 8410637 is most likely in the core helium-burning red clump phase of evolution and has an age and composition that are very similar to the stars in the open cluster NGC 6819. The mass of the RG in KIC 8410637 should therefore be similar to the mass of RGs in NGC 6819, thus lending support to the latest version of the asteroseismic scaling relations. This is the first direct measurement of both mass and radius for an RG to be compared with values for RGs from asteroseismic scaling relations thereby providing an accurate comparison. We find excellent agreement between log g values derived from the binary analysis and asteroseismic scaling relations. Conclusions. We have determined the masses and radii of the two stars in the binary accurately. A detailed asteroseismic analysis will be presented in a forthcoming paper, allowing an informative comparison between the parameters determined for the dEB and from asteroseismology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.