In animal studies, increased amounts of triglyceride associated with skeletal muscle (mTG) correlate with reduced skeletal muscle and whole body insulin action. The aim of this study was to test this relationship in humans. Subjects were 38 nondiabetic male Pima Indians (mean age 28 +/- 1 years). Insulin sensitivity at physiological (M) and supraphysiological (MZ) insulin levels was assessed by the euglycemic clamp. Lipid and carbohydrate oxidation were determined by indirect calorimetry before and during insulin administration. mTG was determined in vastus lateralis muscles obtained by percutaneous biopsy. Percentage of body fat (mean 29 +/- 1%, range 14-44%) was measured by underwater weighing. In simple regressions, negative relationships were found between mTG (mean 5.4 +/- 0.3 micromol/g, range 1.3-1.9 micromol/g) and log10M (r = -0.53, P < or = 0.001), MZ (r = -0.44, P = 0.006), and nonoxidative glucose disposal (r = -0.48 and -0.47 at physiological and supraphysiological insulin levels, respectively, both P = 0.005) but not glucose or lipid oxidation. mTG was not related to any measure of adiposity. In multiple regressions, measures of insulin resistance (log10M, MZ, log10[fasting insulin]) were significantly related to mTG independent of all measures of obesity (percentage of body fat, BMI, waist-to-thigh ratio). In turn, all measures of obesity were related to the insulin resistance measures independent of mTG. The obesity measures and mTG accounted for similar proportions of the variance in insulin resistance in these relationships. The results suggest that in this human population, as in animal models, skeletal muscle insulin sensitivity is strongly influenced by local supplies of triglycerides, as well as by remote depots and circulating lipids. The mechanism(s) underlying the relationship between mTG and insulin action on skeletal muscle glycogen synthesis may be central to an understanding of insulin resistance.
The cellular basis of insulin resistance is still unknown, however, relationships have been demonstrated between insulin action in muscle and the fatty acid profile of the major membrane structural lipid (phospholipid). The present study aimed to further investigate the hypothesis that insulin action and adiposity are associated with changes in the structural lipid composition of the cell. In 52 adult male Pima Indians, insulin action (euglycemic clamp), percentage body fat (pFAT; underwater weighing), and muscle phospholipid fatty acid composition (percutaneous biopsy of vastus lateralis) were determined. Insulin action (highdose clamp; MZ) correlated with composite measures of membrane unsaturation (% C20-22 polyunsaturated fatty acids [r = 0.463, P < 0.001], unsaturation index [r = -0.369, P < 0.01]), a number of individual fatty acids and with A5 desaturase activity (r = 0.451, P < 0.001). pFAT (range 14-53% ) correlated with a number of individual fatty acids and A5 desaturase activity (r = -0.610, P < 0.0001). Indices of elongase activity (r = -0.467, P < 0.001), and A9 desaturase activity (r = 0.332, P < 0.05) were also related to pFAT but not insulin action. The results demonstrate that A5 desaturase activity is independently related to both insulin resistance and obesity. While determining the mechanisms underlying this relationship is important for future investigations, strategies aimed at restoring "normal" enzyme activities, and membrane unsaturation, may have therapeutic importance in the "syndromes of insulin resistance." (J. Clin. Invest. 1995. 96:2802-2808
There is evidence that insulin resistance and obesity are associated with relative increases in the proportion of glycolytic type IIb muscle fibers and decreases in the proportion of oxidative type I fibers. Futhermore, insulin resistance and obesity are associated with the fatty acid (FA) profile of structural membrane lipids. The present study was undertaken to define interrelationships between muscle fiber type and oxidative capacity, muscle membrane FA composition, and insulin action and obesity. Muscle morphology, insulin action, and body fat content were measured in 48 male nondiabetic Pima Indians. Percent body fat (pFAT, determined by hydrodensitometry) correlated negatively with percentage of type I fibers (r = -0.44, P = 0.002) and positively with percentage of type IIb fibers (r = 0.40, P = 0.005). Consistent with this finding, pFAT was also significantly related to oxidative capacity of muscle, as assessed by NADH staining (r = -0.47, P = 0.0007) and citrate synthase (CS) activity (r = -0.43, P = 0.008). Insulin action was correlated with oxidative capacity (CS; r = 0.41, P = 0.01) and weakly correlated with percentage of type IIb fibers (r = -0.29, P = 0.05). In addition, relationships were shown between muscle fiber type and FA composition (e.g., percentage of type I fibers related to n-3 FA; r = 0.37, P = 0.01). Thus leaness and insulin sensitivity are associated with increased oxidative capacity and unsaturation of membranes in skeletal muscle. Present studies support the hypothesis that muscle oxidative capacity and fiber type may play a genetically determined or an environmentally modified role in development of obesity and insulin resistance.
Objective To assess the distribution of cord blood insulin in an unselected population, and examine its relation to birthweight centiles. Setting District General Hospital in Nottinghamshire. Subjects 209 unselected singleton births. Mean Outcome Measure Cord blood insulin; cord blood C‐peptide; birthweight centiles. Results Hyperinsulinaemic babies (> 97th centile for cord insulin) were found at all birthweight centiles. 15% of high birthweight babies were hyperinsulinaemic. For low birthweight babies, the distribution of cord insulin/C‐peptide was skewed indicating a high number of low values. Hypoinsulinaemic babies were present up to the 50th centile for birthweight. Conclusions Abnormalities of fetal insulinisation may be found in babies of all birthweights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.