The effect of various nanoparticles (NPs) added to the electrolyte on the composition, structure, and properties of oxide layers formed by plasma electrolytic oxidation (PEO) on a cast magnesium alloy AZ81A was studied in this work. The oxide layers were obtained by alternating adding silicon dioxide SiO2, silicon nitride Si3N4, yttrium oxide Y2O3, tungsten carbide WC, and titanium carbide TiC NPs to the electrolyte. The obtained oxide layers were studied by scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDXMA), X-ray diffraction analysis (XRD), instrumental indentation and potentiodynamic polarization (PDP). The thickness, roughness, microhardness, adhesion and corrosion resistance of the oxide layers were determined. The greatest increase in the oxide layer thickness, in its hardness and corrosion resistance was observed for TiC and WC NPs added to the electrolyte during PEO. The addition of Si3N4 NPs leads to a decrease in the oxide layer thickness and its hardness, while the corrosion resistance is comparable to the one of the uncoated magnesium alloy.
Тольяттинский государственный университет, ул. Белорусская 14, Тольятти, 445667, Россия Катализаторы на основе металлов широко используются в химической и нефтеперерабатывающей промышлен-ности. Обычно, в качестве носителя катализаторов применяют пористые керамическую или оксидную основу, на которую наносятся активные вещества, как правило, благородные металлы. Основой недостаток существующей технологии -это слабая адгезия металла и основы, низкая механическая прочность, плохой теплообмен и контакт катализатора с газом. В настоящее время перспективными являются катализаторы на основе неблагородных метал-лов и их оксидов, нанесенные и закрепленные на носители в виде сеток. Они более прочны, обладают высокой тепло-проводностью, обеспечивают хороший контакт газа с катализатором. Однако металлические носители в виде сеток обладают низкой удельной поверхностью по сравнению с пористой керамикой, поэтому существует потребность в разработке способов увеличения удельной поверхности металлической основы катализаторов. Работа посвящена способам создания развитой поверхности на цельнометаллическом сетчатом носителе для катализаторов. Показано, что увеличить удельную поверхность носителя можно несколькими способами: 1) непосредственной термообработ-кой нержавеющей микросетки в кислородосодержащей среде; 2) нанесением барьерного покрытия и последующей его термообработкой в воздушной атмосфере; 3) непосредственным электроосаждением никелевого покрытия с развитой поверхностью на сетку из нержавеющей стали. В работе также показано, что при разных режимах отжига можно получить развитую поверхность сетки -носителя в виде нановискерных структур или микропор соединен-ных каналами, а также формировать особый фазовый состав поверхности, включая получение оксидов железа и (или) хрома. Такие носители с развитой поверхностью из оксида железа или оксида хрома уже сами по себе можно использовать как катализаторы в производстве аммиака, для дегидрирования олефиновых, алкилпиридиновых и алкилароматических углеводородов и др. Metal-based catalysts are widely used in chemical and petroleum industries. Typically, active components as noble metals are supported on the porous ceramic or oxide carrier. The main disadvantage of the existing technology is the weak adhesion of the metal and carrier, low mechanical strength, bad heat transfer and bad contact of the catalyst with gas. Currently, perspective catalysts are based on noble metals and their oxides supported and fixed on the mesh carriers. They are more durable, have high thermal conductivity and provides a good gas contact with the catalyst. However, metal mesh carriers have low surface area in comparison with the porous ceramics, so developing methods to increase the specific surface of the metalbased catalysts is required. The work is devoted to methods of creation high surface of the metal mesh catalyst carrier. Shown that there are several ways to increase the specific surface: 1) direct heat treatment of stainless steel meshin oxygen-containing environment; 2) deposition the barrier coa...
Oxide layers on Mg97Y2Zn1 magnesium alloy with strengthening LPSO-phase were formed by plasma electrolytic oxidation (PEO) in bipolar mode with frequency variation of forming current pulses (50 and 500 Hz) and addition of sodium aluminate or sodium silicate to alkali phosphate fluoride electrolyte. Microstructure, chemical and phase composition, corrosion and mechanical properties of the oxide layers formed were investigated. With increasing current frequency for both electrolytes, an increase in homogeneity of the oxide layers structure and a decrease in their porosity and fracturing at constant thickness were recorded. The oxide layers formed at 500 Hz even with some decrease in hardness have better adhesive strength and 2 orders of magnitude higher short-term corrosion resistance values. PEO of Mg-alloy with LPSO-phase in the electrolyte with addition of sodium aluminate in combination with increased pulse frequency (500 Hz) allows forming the best-quality uniform oxide layer with high hardness, adhesive strength and corrosion resistance properties. The use of electrolyte with addition of sodium silicate reduced the adhesive strength by 1.5 times and brought down the long-term corrosion resistance of oxide layers by an order of magnitude, as compared with the electrolyte with sodium aluminate. The reason for a significant improvement in the complex of protective properties of the oxide layers with an increase in the current pulse frequency is supposed to be a decrease in the power and duration of individual microarc discharges with simultaneous increase in their number per unit oxidized area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.