With the growth of Internet of Things (IoT), which connects billions of small, smart devices to the Internet, cyber security has become more difficult to manage. These devices are vulnerable to cyberattacks because they lack defensive measures and hardware security support. In addition, IoT gateways provide the most fundamental security mechanisms like firewall, antivirus and access control mechanism for identifying such attacks. In IoT setting, it is critical to maintain security, and protecting the network is even more critical in an IoT network. Because it works directly at local gateways, the Network Intrusion Detection System (NIDS) is one of the most significant solutions for securing IoT devices in a network. This research includes various IoT threats as well as different intrusion detection systems (IDS) methodologies for providing security in an IoT environment, with the goal of evaluating the pros and drawbacks of each methodology in order to discover future IDS implementation paths.
Aim:
This in vitro study aimed to compare the fracture resistance of simulated immature permanent teeth restored with apical plugs of mineral trioxide aggregate (MTA), Biodentine, and bone cement.
Methods:
Forty-eight single-rooted human maxillary central incisors were selected and decoronated 6 mm above and 9 mm below the cementoenamel junction to simulate the immature teeth. Based on weight and homogeneity, the samples were distributed into three experimental groups (n = 12) and one control group (n = 12). In all the experimental group samples, a peeso reamer size 5 was stepped out 1 mm beyond the apex to enlarge the apices to a diameter of 1.5 mm. Apical plugs of MTA Plus (Prevest DenPro Limited, India), Biodentine (Septodont, France), and Bone cement (Surgical Simplex P, Stryker, Australia) were placed to 4 mm, and obturation was done using gutta-percha and AH Plus® sealer (Dentsply DeTrey, Konstanz, Germany). The force was applied at 45° angulation until fracture, using the universal testing machine. The results were analyzed using a one-way analysis of variance followed by Tukey’s post hoc test at a 95% confidence level.
Results:
The Biodentine group showed a statistically higher fracture resistance value than the MTA Plus and bone cement group (P = 0.014 and P = 0.016, respectively). No statistically significant difference was reported between MTA Plus and the bone cement group.
Conclusion:
Within the limitations of this study, using Biodentine as an apical plug increases the fracture resistance of immature teeth. Bone cement can be used as a viable alternative to MTA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.