The recovery of structural defects in gallium nitride (GaN) and aluminum nitride (AlN) after implantation of In+111 and Sr+89 in the dose range (0.1–3) 1013 cm−2 and ion energies of 60–400 keV has been investigated as a function of annealing temperature with emission channeling (EC) and perturbed γγ angular correlation spectroscopy. The implanted In and Sr atoms occupied substitutional sites in heavily perturbed surroundings of point defects after room temperature implantation. No amorphization of the lattice structure was observed. The point defects could be partly removed after annealing to 1473 K for 10–30 min. Lattice site occupation of implanted light alkalis, Na+24 in GaN and AlN as well as Li+8 in AlN, were also determined by EC as a function of implantation and annealing temperature. These atoms occupied mainly interstitial sites at room temperature. Lithium diffusion and the occupation of substitutional sites was observed in GaN and AlN at implantation temperatures above 700 K. A lattice site change was also observed for sodium in AlN, but not in GaN after annealing to 1073 K for 10 min.
Single crystalline GaN-layers were implanted with radioactive 167Tm and 169yb ions, and their lattice sites were determined using the emission channeling technique. After the decay of 167Tm to 167Er, photoluminescence studies were performed. Upon room temperature implantation, rare earth atoms immediately occupy relaxed substitutional sites with an average relaxation of about 0.025 nm. Isochronal annealing treatments up to 800 °C and co-implantation of oxygen to a dose an order of magnitude greater than that of the Tm or Yb do not influence the rare earth lattice sites. A variety of different rare earth related luminescence lines are observed, and co-implantation of oxygen strongly changes the line intensities.
Single crystalline GaN-layers were implanted with radioactive 111In ions. The lattice location of the ions and the recovery of the implantation induced damage was studied using the emission channeling technique and perturbed-γγ-angular-correlation spectroscopy as a function of the annealing temperature. We find the majority of indium atoms on substitutional sites even directly after room temperature implantation, but within a heavily disturbed surrounding. During isochronal annealing treatments in vacuum, a gradual recovery of the implantation damage takes place between 873 K and 1173 K. After 1173 K annealing about 50 % of the In atoms occupy substitutional lattice sites with defect free surroundings.
Radioactive Li ions were implanted into natural IIa diamonds at temperatures between 100 K and 900 K. Emission channelling patterns of α-particles emitted in the nuclear decay of 8 Li (t 1/2 = 838 ms) were measured and, from a comparison with calculated emission channelling and blocking effects from Monte Carlo simulations, the lattice sites taken up by the Li ions were quantitatively determined. A fraction of 40(5)% of the implanted Li ions were found to be located on tetrahedral interstitial lattice sites, and 17(5)% on substitutional sites. The fractions of implanted Li on the two lattice sites showed no change with temperature, indicating that Li diffusion does not take place within the time window of our measurements.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.